Заливка металла в формы

Заливка форм металлом и выбивка отливок.

Основные требования к заливке форм:

– жидкий металл следует заливать в полость формы по возможности быстро и аккуратно, но непрерывно;

– в период заливки литниковая система должна быть заполнена жидким металлом;

– так как синтетическая пленка полости формы расплавляется ют тепла при Заливке, необходимо, чтобы нагреваемая площадь была меньше, а скорость заливки больше;

– выпор для сообщения полости формы с атмосферой должен быть таким, чтобы в полости формы постоянно поддерживалось атмосферное давление;

– струя жидкого металла не должна ударять в стенки формы;

– в отливку не должен попадать шлак и песок.

Заливка форм производится при остаточном давлении в полости опок:

– для алюминиевых сплавов……….510–460 мм рт. ст.;

– для чугуна……………………………….460–410 мм рт. ст.;

– для стали…………………………………410–360 мм рт. ст.,

Желательно, чтобы при вакуум-процессе температура заливки была на 10 -20 °С выше, чем для сырой формы. Это объясняется тем, что при низкой температуре заливки газ, выделяющийся из синтетической пленки и других материалов, остается в жидком металле, а это часто приводит к образованию газовых пузырей и пор прямо под поверхностной коркой отливки, поскольку тонкий слой жидкого металла прижимается к поверхности формы атмосферным давлением и быстро затвердевает. С другой стороны, если температура заливки слишком высока, может иметь место пригар. Поэтому очень важным является выбор умеренной температуры заливки, которая зависит от материала, толщины стенок и размера отливки.

Для вакуум-процесса целесообразно, чтобы время заливки было короче, чем для заливки обычных песчано-тлинистых форм: фактически время заливки уменьшается на 20–30%. Это необходимо для того, чтобы до минимума свести площадь сгорания пленки при распространении тепла от жидкого металла.

При большем увеличении скорости заливки происходит захватывание песка, окалины, шлака и газа. Удары струи жидкого металла в стенки формы могут привести к разрушению формы.

После затвердевания отливки форма отключается от вакуумной системы, и охлаждение отливки производится в песке. Время затвердевания отливок в вакуумных формах при толщинах отливок до 30 мм аналогично времени затвердевания в обычных сухих песчаных формах.

Выбивка отливок производится отключением опок от вакуумной системы. Песок проваливается в приемный бункер, откуда он после сепарации и охлаждения подается в бункер формовочной машины.

Контроль качества отливок, виды брака и меры его предупрежденияКонтроль качества отливок осуществляется визуально или с помощью специальных приборов. Изготовление отливок по вакуум-процессу сопровождается следующими видами брака:

– увеличенная шероховатость поверхности, которая может возникать из-за низкого класса чистоты и загрязненности рабочей поверхности модельной оснастки, «просечки» слоя противопригарной краски, «выхода» в облицовочный слой крупных фракций песка, при использовании крупнозернистого песка в облицовочном слое, а также если остаточное давление в форме при заливке выше рекомендованного. Этого можно избежать повышением чистоты и тщательной очисткой поверхности модельной оснастки, увеличением толщины слоя краски, уменьшением времени вибрации, отсеиванием крупных фракций песка из облицовочного слоя и доводкой остаточного давления до установленных норм; – заливы по разъему формы и нарушение геометрии из-за деформации модельной плиты при облицовке ее пленкой, этих недостатков можно избежать увеличением жесткости модельной плиты;

– песчаные раковины, возникающие из-за размыва и обвала формы, предотвращаются увеличением сечения элементов литниковой системы с целью уменьшения скорости истечения металла в полость формы;

– газовые раковины, которые появляются вследствие повышенного содержания газов в металле, недостаточной сушки противопригарного покрытия и кипения металла в замкнутых полостях отливок. Этот вид брака можно предотвратить дегазированием и тщательным раскислением сплава, увеличением времени сушки противопригарного покрытия и установлением выпоров или увеличением площади их сечения, а также повышением остаточного давления в форме при заливке металла.

Технологии витражей

Витражи – это вид искусства и отрасль производства, основанные на использовании игры света на цветном стекле. С годами его значение расширилось и приобрело новые оттенки: от композиции из кусочков цветного стекла, соединённых металлическим профилем, до нанесения рисунка прямо на поверхность стекла. Когда-то витражи были безумно дорогим видом искусства. Современные технологии сокращают сроки изготовления, а главное – стоимость изделий. Сейчас витражи вполне доступное удовольствие.

На сегодняшний день существуют различные технологии исполнения витражей

Пескоструйная обработка стекла

Смешанные технологии изготовления витражей

Классический витраж.

Классический наборной витраж представляет собой набор цветных стекол, вырезанных по определенному рисунку, скрепленных специальным свинцовым, медным или латунным профилем. В классических витражах применяется силикатное разноцветное стекло. С древних времен для скрепления стекол в витраже использовался свинцовый профиль. Создается полноценное ощущение «старинного» мозаичного витража. Техникой классический витраж изготовлены витражи многих памятников архитектуры: старинные замки, в древних храмах, соборах, костелах. Сейчас классические наборные витражи изготавливаются для мебельных фасадов, межкомнатных дверей.

Технология Фьюзинга

Технология Фьюзинга, также известна как Техника спекания. Изделия и детали декора, изготовленные в технике фьюзинг, являются оригинальным дополнением интерьера дома. Технику фьюзинга можно использовать как для исполнения отдельных элементов интерьера, так она может работать и для вставок в витраж.

Гравировка стекол.

В производстве витражей всегда используется стекло ведущих европейских и американских фирм-производителей, поэтому выбор стекла неограничен как по цветовой гамме, так и по фактуре. Здесь главное пожелания Заказчика и особенности интерьера. В одном случае нужно использовать лишь прозрачные стекла, чтобы создать эффект легкости и воздушности. В другом – глухие стекла, которые почти не пропускают свет, но в отраженном свете выглядят эффектно. Но есть стекла, которые, пропуская световые лучи по-разному, преломляют их, что создает особенный, неповторимый эффект. Также не исключена возможность комбинировать абсолютно разные и по структуре и по фактуре стекла. Наш Заказчик всегда может рассчитывать на индивидуальность исполнения его заказа. Многообразие цвета и фактуры стекла безграничны. Художественное воплощение идей Заказчика – наша главная цель.

Читайте также:
Изготовление металлических дверей своими руками

Техника Тиффани.

Техника Тиффани, наиболее распространенная в наши дни техника изготовления витражей носит имя ее создателя – американца Луи Тиффани. В конце 19 века в США Луи Комфорт Тиффани, представитель известной семьи ювелиров, занялся изготовлением витражей. Тиффани произёл ряд экспериментов, касающихся совершенствования сборки и под его руководством было изобретено несколько новых видов стёкол. Тиффани используют палитру из более чем 150 цветов и фактур художественных стекол лучших зарубежных производителей. Техника Тиффани одна из самых дорогостоящих. Техникой Тиффани пользуются и сейчас изготовители витражей во всём мире.

Пескоструйная обработка стекла.

Пескоструйная обработка стекла является отдельным направлением витражного искусства. При обработке стекла сжатым воздухом с абразивным песком, частицы кварцевого песка в сильной струе сжатого воздуха делают поверхность стекла матовой, получается рисунок на контрасте с прозрачным или матовым. Изолируя участки обрабатываемой поверхности, можно создавать самые причудливые композиции.

Пескоструйка стекла позволяет достигать степени обработки стекла горельефной глубины. Многоуровневое рельефное углубления дает глубокое объемное изображение. Для достижения большего художественного эффекта отдельные области могут дополнительно гравироваться, шлифоваться или заливаться стеклоэмалью. Можно добиться интересного эффекта, если подсветить пескоструйный витраж с торца, тогда рисунок начинает как бы светится из внутри.

Смешанные технологии изготовления витражей.

Комбинированная технология объединяет в себе элементы всех предыдущих технологий изготовления витража. Сначала изготавливаются маленькие фьюзинговые элементы. Затем они крепятся на стекло по заданному шаблону с помощью ультрафиолетового клея, а затем по рисунку выполняется классический витраж. Получается очень красочные и недорогие витражи.

Витраж пленка.

Техника пленочный витраж возникла в 70х гг. прошлого века, и со временем получила широкое распространение в силу относительно невысокой стоимости. При качественном производстве фальшвитража, не искушенные ценители могут и не заметить разницы между классическим витражом и фальшвитражом. Помимо всего, псевдовитражи имеют такие преимущества, как возможность сборки в стеклопакеты, без нарушения свойств оных и всевозможную гибкость и пластику линий в дизайне. Благодаря своей не большой массе фальшвитраж хорошо подходит для установки в подвесные потолки

Технология Фьюзинга.

Технология Фьюзинга, также известна как Техника спекания. Фьюзинг стекла даёт возможность использовать витражи различной формы, структуры и толщины, витражи могут иметь радиус. Рисунок при технике Фьюзинг никогда не повторяется.

При изготовлении витражи Фьюзинг используют особое стекло, которое независимо от цвета имеет единый коэффициент температурного расширения. На стеклянный лист выкладывают кусочки стёкол, проволоку, гранулы и другие элементы витража. Из таких стекол собирается витраж, который запекается в единый пласт в специальных печах. После того, как рисунок будущего витража поступил на производство, мастер вырезает поэлементно все детали рисунка из стекол соответствующих цветов. Затем с помощью специального клея эти стеклышки-детальки витража клеятся на очищенные стекла и переносятся в печь. После закрытия печи выставляется ступенчатый режим поднятия температуры до 850 градусов, а затем режим снижения температуры. В зависимости от толщины стекла, выбранного рисунка, применяемых стекол, режим спекания меняется. Цикл спекания витража колеблется от 15 до 18 часов.

Технологией Фьюзинг достигается необыкновенный декоративный эффект витражного стекла, которое прекрасно вписывается в современный интерьер. При использовании технологии фьюзинг можно заполнять витражами большие проемы любой формы и практически любого объема.

Технология изготовления витражей Фьюзинг невероятно сложная, кропотливая и столь же невероятно красивая.

Витражи Фьюзинг могут украшать самые разнообразные объекты: зеркала, межкомнатные перегородки, предметы декорирования, дверные полотна, оконные стёкла, элементы мебели, светильники, люстры, бра, конструкции с применением больших стеклянных поверхностей.

Литье металлов

Человечество используем металлы и их сплавы несколько тысячелетий. Сначала металлы находили в виде самородков и россыпей, позже доисторические племена научились перерабатывать металлосодержащие руды. Проверенным способом получения изделий из металлов было литье в земляные формы.

Отливали наконечники для стрел и мечи, сельскохозяйственные орудия и инструменты, утварь и украшения. За прошедшие с тех пор тысячелетия человек изобрел множество новых приемов обработки материалов и методов литья, включая литье под давлением, газифицируемые формы и порошковую металлургию. Старинный способ также сохранился, но используется в основном в скульптурных мастерских и художественных промыслах.

Особенности литья металлов

По сравнению с другими материалами, такими, например, как воск или гипс, литье металлов отличается некоторыми особенностями. Первая из них — высокая температура перехода из твердое в жидкое состояние. Воск, гипс и цемент затвердевают при комнатной температуре. Температура плавления металлов гораздо выше — от 231 °C у олова до 1531 °C у железа. Перед тем, как приступить к литью металла, его необходимо расплавить. И если олово можно расплавить в глиняной плошке на простом костре из подобранных рядом сучьев, то для плавления меди, не говоря уже о железе, понадобится специально оборудованная печь и подготовленное топливо.

Олово и свинец — самые мягкие и легкоплавкие металлы — можно отливать даже в деревянные матрицы.

Для литья более тугоплавких металлов потребуются формы из смеси песка и глины. Некоторые металлы, как, например, титан, требуют для литья металлические формы.

Читайте также:
Изготовление теплицы из профильной трубы своими руками

После заливки изделию требуется остыть. Многоразовые матрицы разбирают, одноразовые формы разрушают, и отливка готова к дальнейшей механической обработке или к использованию.

Металлы для заливки

Черные металлы

В металлургической промышленности различают цветные и черные металлы. К черным относятся железо, марганец, хром и сплавы на их основе. Сюда входят все стали, чугуны и ферросплавы. Черные металлы дают более 90% мирового потребления металлических сплавов. Из стали производят корпуса и детали транспортных средств от самоката до супертанкера, строительные конструкции, бытовую технику, станки и другое промышленной оборудование.

Чугун — отличный металл для литья крупных прочных и долговечных конструкций, не подверженных напряжениям изгиба или скручивания.

Цветные металлы, в свою очередь, в зависимости от физических свойств, и прежде всего, удельного веса, делятся на две большие группы

Легкие цветные металлы

В эту группу входят алюминий, титан, магний. Эти металлы встречаются реже, чем железо, и стоят дороже. Их применяют в тех отраслях, где нужно снизить вес изделия — аэрокосмическая промышленность, производство высокотехнологичных вооружений, производство вычислительной и телекоммуникационной техники, смартфонов и малых бытовых приборов.

Титан благодаря своему отличному взаимодействию с тканями человеческого организма широко применяется для протезирования костей суставов и зубов.

Тяжелые цветные металлы

Сюда относятся медь, олово, свинец, цинк и никель. Их применяют в химической промышленности, производстве электроматериалов, в электронике, на транспорте – везде, где требуются достаточно прочные, упругие и коррозионно-стойкие сплавы.

Благородные металлы

В эту группу входят золото, серебро, платина, а также более редкие рутений, родий, палладий, осмий, иридий.

Первые три известны человеку с доисторических времен. Они редко (относительно меди и железа) встречались в природе и поэтому служили платежным средством, материалом для ценных украшений и ритуальных предметов.

Золото и платина

С развитием цивилизации золото и платина сохранили свою роль средства накопления богатств, однако стали весьма широко использоваться в промышленности и медицине из-за своих уникальных физико-химических свойств.

Методы литья металлов

Основные методы литья металлов следующие:

Традиционный метод

Металл поступает в форму под действием силы тяжести. Применяются песчано-глиняные или металлические матрицы. Недостаток метода — высокая трудоемкость изготовления форм и других операций, тяжелые условия труда и низкая экологичность

Литье под низким давлением

Суть метода заключается в том, что тигель с металлом и матрицы для отливок располагаются в герметичной камере. Металлопровод, сделанный из титанового сплава, опускается из формы в расплавленный металл. В это время в камеру подают низкое избыточное давление воздуха или инертного газа. Металл попадает в матрицу под давлением, скорость потока весьма высока и при этом регулируется. Форма заполняется полностью и равномерно.

Метод позволяет получать высококачественные отливки, в том числе особо тонкостенные. Качество поверхности также превосходит отливки, получаемые традиционным методом. Литейные газы удаляются через отводящий трубопровод в систему очистки, откуда попадают в атмосферу. Метод отличается высокой автоматизацией операций, улучшенными условиями труда персонала и высокой экологичностью. К тому же при таком литье и материалы, и расход энергии существенно экономятся.

Литье под высоким давлением

Метод применяется как в черной, так и в цветной металлургии и позволяет получать наиболее точные и однородные отливки. Металл под высоким напором поступает в матрицу со скоростью до 120 м/с и мгновенно заполняет ее.

Деталям, полученным таким методом, практически не требуется финишная механическая обработка. Таким методом можно отливать детали практически любой конфигурации, с тонкими стенками, с готовыми отверстиями и даже с готовой резьбой.

Инжекционное литье

Инжекционный метод от обычного литья под давлением тем, что металл попадает в матрицу в виде порошка, смешанного со связующим веществом. Формы делают из высокопрочных сталей.

Высокая текучесть смеси позволяет заполнить мельчайшие детали рельефа форм самой сложной конфигурации, включающих внутренние полости. Достоинством этого метода является высокая точность поверхности, делающая ненужной дополнительную механическую обработку или сводящую ее к минимуму. Другим преимуществом является высочайшая физико-химическая однородность отливки.

Существуют и другие методы литья деталей, имеющие нишевое применение.

Основные способы литья металлов

Литье в землю

Традиционный способ. Изготавливается простая или составная модель из дерева или других модельных материалов, потом по модели делается матрица из песчано-глиняной смеси. Подробнее об этом способе читайте в соответствующей статье.

Технология литья в землю

Модель извлекают из формы, части ее собирают вместе, создают литниковую систему. Форму накалывают тонкими острыми иглами, чтобы обеспечить газоотведение. Производят отливку, ждут ее остывания,

Литье в металлические формы

Разъемную форму, называемую кокилем, изготавливают из металлических деталей. Части матрицы получают путем отливки или, если требуется обеспечить высокое качество поверхности и точность размеров, путем фрезерования. Формы смазывают антипригарными составами и производят заливку.

Читайте также:
Какая марка стали самая прочная

Литье в металлические формы

После остывания кокили разбирают, извлекают отливки, очищают. Металлическая матрица выдерживает до 300 рабочих циклов.

Литье по газифицируемым моделям

Модель выполняется не из дерева или воска, а из легкоплавкого и газифицируемого материала, преимущественно полистирола. Модель остается в форме и испаряется при заливке металла.

Литье по газифицируемым моделям

Преимущества способа:
  • модель не требуется извлекать из матрицы;
  • можно изготовлять модели сколь угодно сложных отливок, не нужны сложные и составные формы;
  • существенно снижена трудоемкость моделирования и формования.

Литье по газифицируемым моделям приобретает большую популярность на современных металлургических производствах.

Формы для литья

Самый древний вид форм — это формы из песчано-глиняной формовочной смеси, или «земли». Исторически центры металлургии возникали рядом с местами залегания уже готовых по своему составу для литья песков, например, рядом с всемирно известным Каслинским чугунным заводом. Смеси делятся на обмазочные и наполнительные.

формы из песчано-глиняной формовочной смеси

Для построения любой матрицы требуется модель — макет будущего изделия в натуральную величину, но несколько больших размеров — на величину литейной усадки.

Модель помешают по центру опалубки, или опоки, и наносят на нее слой обмазочной смеси — термостойкой и пластичной. Потом начинают послойно, тщательно трамбуя каждый слой, заполнять опоку наполнительной смесью. Требования к наполнительным смесям намного ниже, чем к обмазочным — они должны выдерживать давление залитого металла, сохраняя конфигурацию отливки, и обеспечивать выход плавильных газов. После модель извлекают из формы и на ее место заливают расплав.

Для отливок сложной конфигурации, имеющих замысловатые детали и внутренние полости, применяют составные модели и формы из нескольких частей.

Литье также осуществляется и в металлические формы. Их применяют при больших тиражах отливаемых деталей, в тех случаях, когда требуется высокая точность размеров и низкая шероховатость поверхности отливки, а также для некоторых металлов, активных в нагретом состоянии. Температура плавления материала формы должна быть существенно выше, чем температура отливаемого расплава.

Область применения

Различные способы литья имеют свои преимущественные сферы применения.

Так, литье в песчаные формы применяется при единичных отливках или малых сериях. Проверенный тысячелетиями способ понемногу уходит с промышленных предприятий, но продолжает использоваться на художественных промыслах и в скульптурных мастерских.

Литье в металлические формы применяется в случаях, когда требуется

  • большие тиражи отливок;
  • высокая точность размеров;
  • высокое качество поверхности.

Также литье в металл популярно в ювелирной промышленности и в производстве металлических украшений.

Литье под давлением все шире используется предприятиями, сфокусированными на качестве своих изделий, следящими за экологией, охраной труда и эффективным расходованием материальных и энергетических ресурсов.

Литье по газифицируемым моделям применяется в тех случаях, когда планируются большие тиражи отливок, требуется высокая точность и экономия трудоемкости.

О производстве литья

Популярные статьи

Обучающий PDF-мануал «5 способов эффективно вложить 1000+ руб»

Модные часы для успешных

Свежие записи

  • Влияние ультразвука на организм человека
  • Слесарь электромонтажник
  • Дуговая печь
  • Конвейер пластинчатый
  • Конвейерная лента
  • Слесарь электрик по ремонту электрооборудования
Ноябрь 2021
Пн Вт Ср Чт Пт Сб Вс
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30

Блок подписки

Согласие на получение новостей с сайта

Заливщик металла

В литейном цехе после расплавления металла в плавильных печах, металл выпускается из плавильной печи. Потом транспортируется к литейным формам. Формы заполняются расплавленным металлом. Выполняет эти работы заливщик металла. В этой статье рассмотрим, что должен знать и уметь, а также примеры работ заливщика металла согласно ЕТКС,

Заливщик металла 2 разряд

Характеристика работ:

Заливка из крановых и ручных ковшей вместимостью до 0,3 т чугуна, стали или цветного жидкого металла в формы, изложницы или в постоянные металлические формы для несложных и толстостенных отливок. Подготовка ковшей, изложниц и других разливочных устройств к заливке. Надевание и снятие жакетов различных размеров при формовке в почве на конвейере с заданным ритмом. Контроль температуры разливаемого металла. Выполнение работы в качестве подручного при заливке отливок из крановых ковшей вместимостью до 5 т. Определение по внешним признакам пригодности жидкого металла и ориентировочной температуры в период его заливки.

Должен знать:

Устройство небольших кранов, желобов и воронок. Литейные свойства заливаемых металлов. Правила заливки форм и рациональные приемы установки грузов на формы и снятия жакетов с формы. Устройство применяемых изложниц, прибыльных надставок, сифонов и промежуточных ковшей. Материалы применяемые при футеровке и окраске желобов и заливочных воронок. Составы красок применяемых для металлических форм. Правила использования подъемно-транспортных средств.

Примеры работ

Заливка металла в формы:

-Бегуны мостовых кранов

-Блоки канатные, крановые и цепные диаметром до 500 мм.

-Вкладыши и крышки подшипниковые диаметром до 150 мм и длиной до 200 мм.

— Изложницы для слитков массой до 300 кг.

-Колодки каркасные тормозные локомотивов.

— Крышки цилиндров паровых насосов диаметром до 500 мм.

-Корпуса плечедержателей медицинского оборудования.

-Маховики и шкивы диаметром до 1000мм.

-Опоки без бурта.

— Патрубки фигурные, цилиндры ребристые, киповые планки с двумя рельсами, якоря, клюзы, кнехты.

-Подшипники армированные подвижного состава.

-Пятники и подпятники подвижного состава.

-Щиты подшипниковые диаметром до 400 мм.

Заливщик металла 3 разряд

Характеристика работ:

Заливка чугуна, стали или цветного металла из крановых ковшей вместимостью до 5 т. В формы и изложницы. Заливка из ручных и крановых ковшей вместимостью до 0,3 т в формы сложных тонкостенных отливок. Заливка металла в простые и средней сложности формы, установленные на рольгангах, движущемся конвейере и в сложные большие кокили. Разливка углеродистых сплавов для литья по выплавляемым моделям ковшами вручную. Установка изложниц в литейной канаве и выемка слитков из изложниц. Раздача жидкого металла при помощи разливочной электротележки. Модифицирование и легирование чугуна в ковше или желобе путем присадки различных компонентов под руководством заливщика более высокой квалификации.

Должен знать:

Устройство применяемых крановых и ручных разливочных ковшей, тиглей и их вместимость. Устройство изложниц и подъемно-транспортных механизмов. Способ управления разливочной электротележкой при разливке металла в формы и изложницы. Способы модифицирования и легирования чугуна в ковше или желобе. Правила раскисления и выдержки металла в ковше при заливке. Назначение и принципы правильного расположения литников, выпоров, прибылей и шлакоуловителей в форме. Способы заливки форм и рациональные приемы надевания и снятия жакетов. Особенности заливки постоянных металлических форм, время выдержки и разливки модифицированного чугуна.

Примеры работ

Заливка металла в формы:

-Блоки канатные, крановые и цепные диаметром до 500 мм.

-Буксы подвижного состава.

-Вкладыши и крышки подшипниковые диаметром до 150 мм и длиной до 200 мм.

-Изложницы для слитков массой свыше и300кг.

-Колеса ходовые мостовых кранов.

-Корпуса фрикционных аппаратов автосцепок.

-Корпуса передних и задних бабок, коробки передач, фартука, каретки металлорежущих станков.

-Котлы отопительные (секции котлов).

-Крышки цилиндров паровых машин и насосов диаметром до 500 мм.

Обзор современных методов литья металла

Несмотря на многовековую историю литейного производства его технологии постоянно совершенствуются. Это позволяет исследователям и производственникам подробно исследовать явления, связанные с новыми параметрами процесса литья, способствуя получению бездефектных отливок хорошего качества. Имеются возможности для моделирования сложных процессов литья, что уменьшает количество литейных дефектов. Передовые методы литья включают производство пластичных отливок и их термический анализ, отливку композитов с металлической матрицей методом вихревого перемешивания, литьё алюминия с применением постоянного тока, процессы литья под давлением и так далее. Некоторые из этих способов рассматриваются далее.

  • Отливка по выплавляемым моделям
  • Кокильное литье
  • Под давлением
  • Под регулируемым давлением
  • В оболочковые формы
  • Центробежное литье
  • По газифицируемым моделям
  • Непрерывное литье
  • Литье металла в ХТС

Отливка по выплавляемым моделям

Литьё по выплавляемым моделям позволяет производить точные компоненты, сводя к минимуму отходы материалов, уменьшая энергоёмкость производства и снижая затраты на последующую обработку готовых отливок, причём любой степени сложности.

В технологии литья по выплавляемым моделям используется оболочка из керамики, гипса или пластика, которая формируется вокруг восковой формы. Затем эта форма плавится и удаляется в печи, а металл заливается в оболочку для создания отливки.

Процесс литья по выплавляемым моделям происходит в несколько этапов:

  • Создание исходного образца, в котором отражается конфигурация готовой детали, с поправкой на тепловую усадку заготовки;
  • Изготовление восковых образцов и создание деревянной модели. Она собирается таким образом, чтобы обеспечить доставку расплава ко всем труднодоступным частям отливки;
  • Создание оболочки пресс-формы, когда вся восковая модель окунается в керамическую суспензию, покрывается песчаной оболочкой и отправляется на сушку. Эти циклы повторяются до тех пор, пока не будет создана оболочка желаемой толщины, которая устанавливается по размерам и конфигурации готовой отливки. После высыхания керамической оболочки она становится достаточно прочной, чтобы удерживать расплавленный металл во время литья.
  • Удаление воска, для чего вся сборка помещается в паровой автоклав, чтобы растопить практически весь воск (остатки, пропитанные керамическим составом, сжигаются в печи). Тогда же удаляются и литники;
  • Расплавление и литьё. Форму предварительно нагревают до определенной температуры и заполняют расплавленным металлом, создавая металлическую отливку. С помощью процесса литья по выплавляемым моделям можно получить готовый продукт из любого сплава. В зависимости от его химического состава можно применить плавку на воздухе или в вакууме. Вакуумная плавка используется тогда, когда в сплаве присутствуют реактивные элементы.
  • Заключительные операции. После того, как отливка окончательно остынет, оболочка кристаллизатора отделяется от отливки путем вытеснения. При этом отрезаются остатки каналов, литников, а, при необходимости, выполняется пескоструйная обработка, шлифовка и механическая доводка отливки до размерам, обусловленным чертежом изделия.

Технология включает стадию неразрушающего контроля, для чего используется флуоресцентный, магнитопорошковый, рентгенографический или другие методы проверки качества.

  • Широкий диапазон массы получаемых отливок – от мелких до 300…350 кг.
  • Универсальность и сложность формы, включая и такие, которые нельзя получить металлорежущей обработкой на станках.
  • Минимизация последующей механической доводки.
  • Высокая точность и низкая шероховатость готовой поверхности.

Литьё по выплавляемым моделям – хорошая альтернатива сварке, поскольку многие компоненты можно объединить в одну отливку сложной формы.

Поскольку инструмент довольно сложен в изготовлении, то данная технология полностью окупает себя в условиях серийного и массового производства.

Кокильное литье

Все виды литья в кокиль – это группа методов, особенно подходящих для получения отливок из цветных сплавов – алюминия, магния и латуни. Перед отливкой функциональные поверхности форм обрабатываются специальным каолином или аналогичным покрытием, которое позволит эффективно разделить поверхности. Формы, которые не могут быть извлечены из изложницы, часто изготавливаются с применением, песчаных стержней. После литья стержни уничтожаются.

По сравнению с литьём в песчаные формы, затвердевание кристаллизатора происходит быстрее за счет лучшей теплопроводности. Образуется отливка с относительно мелкой и плотной структурой материала, которая, в то же время, имеет лучшие механические свойства по сравнению с отливкой из того же материала, но отлитой в песчаную форму.

Преимущества кокильного литья:

  • вследствие более быстрого затвердевания кокильное литье обладает лучшими механическими свойствами и относительно мелкой и плотной структурой материала;
  • небольшая пористость поверхности;
  • высокая точность размеров и уменьшенные показатели шероховатости поверхности;
  • уменьшение коэффициента потерь металла.

Литье в кокиль представляет собой хороший выбор для производства отливок среднего размера для серий от 1000 до 10000 штук при минимальной производственной партии в 100 штук.

Процесс применяется для изготовления отливок средних по размерам корпусов приборов, крышек приводов, стоек, вставок латунных или стальных уплотнителей (гайки, корпуса подшипников, штифты и т. д.).

Под давлением

Литье под давлением – это производственный процесс, адаптированный под изготовление деталей в больших объёмах. Форма для отливки включает литниковый канал, по которому расплавленный материал выходит из сопла машины для литья под давлением. В форме имеется система каналов, которые соединяются с литником, (обычно внутри или как часть пресс-формы) и направляют расплавленный материал в полость пресс-формы. Часть канала после бегунка, называемая затвором, ведёт непосредственно в полость инструмента. После цикла литьевой формы (обычно длится всего несколько секунд) весь расплав охлаждается, оставляя затвердевшую отливку в литнике, направляющих и в полости пресс-формы.

Основным преимуществом метода литья под давлением является возможность массового производства отливок. Первоначальные затраты на внедрение и освоение производства достаточно велики, зато впоследствии стоимость единицы продукции становится чрезвычайно низкой.

  • низкий процент брака (в сравнении с традиционными производственными процессами, включая обработку на станках с ЧПУ);
  • снижение отходов производства вследствие малых потерь металла в литники, направляющие, и места расположения отверстий под выход расплава;
  • возможность получения деталей из термореактивных пластмасс.

Литье под давлением может быть воспроизведено в любом объёме, поскольку стойкость пресс-форм весьма высока. Это обеспечивает однообразие качества отливок и стабильность их характеристик при крупносерийном производстве.

Технология литья под давлением практически исключает любую доработку формы готовых изделий.

Под регулируемым давлением

Разновидность литья под давлением, которая обеспечивает лучшую управляемость процессом. Существует множество факторов, которые могут повлиять на качество конечного продукта. Нижеприведенные переменные играют важную роль в процессе литья под регулируемым давлением:

  • Скорость, с которой расплавленный металл вводится в полость пресс-формы,. Важно, чтобы расплавленный металл полностью заполнил полость до того, как он начнет затвердевать. Если скорость потока металла не идеальна, это отрицательно сказывается на прочности конечного продукта.
  • Давление впрыска, напрямую влияющее на скорость поступления расплавленного металла в полость пресс-формы. При литье под регулируемым давлением увеличивают давление впрыска, чтобы повысить герметичность. Для обеспечения структурной стабильности отливки используется сочетание высокого давления впрыска и увеличенных размеров литника. Это, в свою очередь, улучшает общие механические свойства отливки, в частности, прочность на растяжение.
  • Время, необходимое для того, чтобы расплавленный металл заполнил полость, зависит от скорости металла на затворе и площади затвора. Если затвор большой, скорость впрыска может быть низкой, но если затвор маленький, скорость впрыска должна быть высокой для того, чтобы полностью заполнить полость.

Для литья под давлением используют сплавы металлов и сплавов, которые характеризуются повышенными литейными свойствами (жидкотекучестью).

Важным фактором, влияющим на литейную способность сплава, является интервал затвердевания. Если разница между точкой твердого и жидкого состояния сплава велика, литье под регулируемым давлением не применяют.

В оболочковые формы

Литьё в оболочку применяют для получения головок цилиндров, шатунов и других деталей машин, где требуется повышенная точность. Для данного процесса необходима песчаная форма, причём используется особый тип покрытого смолой песка.

Процесс обеспечивает ряд преимуществ:

  • возможность создавать сложные формы с высочайшей точностью;
  • низкие трудозатраты;
  • пригоден для большинства металлов и сплавов;
  • используется при любых масштабах производства;

Вначале песок тщательно перемешивается со смолой, которая действует как связующее. Затем песок засыпается в нагретую форму, температура которой обычно достигает 750…13000С. Нагретая форма инициирует реакцию с песком, покрытым смолой. Когда песок вступает в контакт с горячей формой, на внутренней её поверхности образуется оболочка. Далее излишки песка удаляют из формы, а затем удаляется и сама оболочка, для чего используются выталкивающие штифты. Выталкиватель встроен в саму форму, что позволяет легко удалить вновь созданную оболочку, при этом не повредив её.

Центробежное литье

Центробежное литье – это процесс, позволяющий получать высокопрочные отливки. Такую технологию выбирают для таких изделий, как корпуса компрессоров реактивных двигателей, гидравлических компенсационных колец, многих изделий оборонного назначения.

Этапы процесса центробежного литья начинаются с заливки расплавленного металла в предварительно нагретую головку. Пресс-форма может быть ориентирована либо по вертикальной, либо по горизонтальной оси в зависимости от конфигурации детали.

При вращении формы во время заливки расплавленного металла центробежная сила распределяет расплавленный металл в форме под давлением, в 100 раз превышающим силу тяжести. Комбинация этого давления, контролируемого затвердевания и вторичного рафинирования позволяет получать изделия высочайшего качества.

Когда пресс-форма начинает заполняться, более плотный расплавленный металл прижимается к стенке. Направленное отверждение прочного металла происходит от периферии пресс-формы к каналу, в то время как менее плотный материал, включая примеси, перемещается к внутреннему диаметру.

После затвердевания отливки деталь удаляют из пресс-формы, а остаточные загрязнения, сохранившиеся на поверхности отливки, подвергаются механической обработке – зачистке.

Вариантом технологии является центробежное литье в вакууме. Оно используется, когда точность детали и контроль воздействия атмосферы имеют решающее значение, поскольку некоторые сплавы, в том числе никель-кобальтовые сплавы, реактивны по отношению к кислороду.

Важно: центробежное литьё в вакууме обеспечивает очень высокую надежность изделий, часто используемых в аэрокосмической и военной промышленности.

По газифицируемым моделям

Представляет собой технологию получения отливок высокого качества с применением исходной модели (заготовки), полученной из материала, который при заливке расплавленного металла в форму насыщается выделяющимися газами.

В результате действия высоких температур, которое проявляется в процессе заливки расплава в форму, модель сначала разрушается, а затем расплавляется. Продукты разрушения в капелеподобном состоянии выдуваются непрерывным газовым потоком. При этом в зоне обработки, в зависимости от конструктивной схемы установки, создается либо отрицательное давление, либо вакуум. Под влиянием разницы давлений внутри и вне контейнера освободившееся место занимается металлическим расплавом, который детально воссоздаёт конфигурацию и размеры отливки.

Непрерывное литье

Процесс, который позволяет позволяет металлам и сплавам растягиваться, формироваться и затвердевать без необходимости прерывания заливки. При этом сокращаются отходы, повышается выход готовой продукции, улучшается экономическая эффективность производства.

Методом непрерывного литья под давлением изготавливаются аккумуляторные решётки. Использование системы роликов и форм с водяным охлаждением снижает вероятность попадания примесей и обеспечивает лучшее соотношение толщины.

Литье металла в ХТС

Ускорение процесса литья привело к разработке холоднотвердеющих смесей (ХТС), получивших широкое распространение. У них есть определенные недостатки. Например, некоторые самовысыхающие масла создают форму, которая требует длительных периодов сушки, особенно когда доступ воздуха к ней предотвращен. Синтетические смолы на основе мочевины, которые также разработаны для использования в качестве ХТС, обладают очень низкими температурами разрушения, что, в свою очередь, ограничивает универсальность получаемой формы. Песочные смеси, содержащие смолы кислотного отверждения на основе фурана (еще одно, но относительно новое связующее, отверждающееся на холоде), также обладают определенными ограничивающими характеристиками. Например, они имеют тенденцию вызывать прилипание формы к отливке, и выделение газов, которое обычно сопровождает заливку расплавленного металла в формы, становится очень выраженным и турбулентным.

Современные составы ХТС образуются с использованием связующих, содержащих по крайней мере одну этоксилиновую смолу дифенилметана или производных дифенола, к которой в качестве отвердителя добавляется хотя бы одно органическое соединение, содержащее множество реакционноспособных аминогрупп.

Очень хорошие результаты получаются, когда этоксилиновые смолы синтезируются из пара-замещенных производных дифенилметана, особенно из бисфенола. При этом их эпоксидный эквивалент превышает 170.

Среди органических соединений, которые могут быть использованы в качестве отвердителей, перспективны составы, имеющие множество реакционноспособных аминогрупп и особенно полимеры (линейные или кольцевые), которые включают от двух до пяти = NCH CH групп.

3D-технологии для литейного производства: как создать форму для отливки за неделю

3D-технологии, интегрированные в технологическую цепочку литейного производства, обеспечивают предприятию реальную выгоду. Как показать все преимущества 3D-сканирования и 3D-печати? Нагляднее всего – продемонстрировать процесс создания детали с нуля аддитивными методами и провести сравнение с традиционными технологиями. С этой целью мы обратились к Павлу Чадушкину, ведущему специалисту производственного направления RP-центра компании iQB Technologies.

– Итак, наша задача – создать эталонную деталь на основе цифровой модели для последующей отливки реального изделия. С чего начинается этот процесс, если мы применяем 3D-технологии?

– Прежде всего, нам необходимо исходное изделие, которое нужно отсканировать, а затем выполнить обратное проектирование (реверс-инжиниринг). Конечно, оно должно быть новое, не бывшее в употреблении, чтобы не было износа детали. Мы оцениваем, насколько сложна ее геометрия и после этого задаем только один вопрос: какой должен быть допуск по точности? Уже по внешнему виду можно понять, каким образом эта деталь производится. Чаще всего это литье (высокоточное или в землю), фрезерование или изготовление на токарном станке. У каждой из этих методик производства есть свои допуски.

После того, как мы имеем представление о технологии производства и допуске, мы выбираем оборудование, а именно – 3D-сканер с нужными нам параметрами точности, и производим оцифровку изделия. Например, ручной сканер Creafrom HandyScan 700 или стационарный Solutionix C500. Такие устройства метрологического класса уже хорошо зарекомендовали себя на производственных предприятиях. Получив 3D-модель, мы переносим ее в программное обеспечение Geomagic Design X, позволяющее быстро и легко обработать данные 3D-сканирования с целью выполнения контроля геометрии и реверс-инжиниринга. Затем к работе подключается инженер, который по результатам сканирования обрисовывает эту деталь и создает твердотельную модель.
В процессе обрисовки инженер исключает из твердотельной модели различные недостатки изделия. Здесь нужно подчеркнуть, что абсолютно любое изделие имеет производственные деформации. Они могут быть обусловлены разными факторами – например, неверно подобранным материалом, сложной формой, деформацией во время транспортировки, изношенным инструментом, с помощью которого производилось изделие.

В любом случае, какой бы объект мы ни взяли для 3D-сканирования, он будет содержать дефекты и отклонения от эталона, а наша задача – создать этот самый эталон. Если деталь круглая, то совершенно точно можно сказать, что отверстие в ней будет не круглым, а эллипсовидным. Соответственно, инженер с помощью ПО этот эллипс исключает и создает окружность правильной формы. Таким путем, обрисовывая каждый элемент геометрии, мы исправляем все недостатки. Когда деталь полностью обрисована, у нас получается твердое тело, которое можно запускать в производство.

Отливка перепускного клапана стравливания избыточного давления газа (в разрезе)

– Мы получили CAD-модель. Теперь нужно определить, каким способом производить изделие.

– Традиционный способ – подготовка оснастки для литья восковых моделей на станке с ЧПУ. В этом случае модель должна адаптироваться под станок, со своими допусками, уклонами, скруглениями – все зависит от оборудования и инструментов, с помощью которых деталь будет производиться.

Но теперь есть и второй путь – 3D-печать, которая является идеальным решением для прототипирования и изготовления малых серий.
Ключевое преимущество аддитивных технологий – возможность создавать изделия максимально сложной формы (в том числе с мельчайшими деталями), которые нельзя произвести традиционными методами. Кроме того, при запуске печати необязательно учитывать сложность геометрии. Это особенно актуально для производства изделий путем металлического и пластикового литья.

Если изделие имеет простую форму, то зачастую целесообразнее его производить на станке с ЧПУ. Если же геометрия сложная, то 3D-печать – оптимальный вариант.

Когда нам нужен не один рабочий прототип, а малая серия – от 10 до 1000 изделий, используется литье в силикон, или двухкомпонентное литье. Для этого нужно получить мастер-модель – эталон, по которому будет создаваться силиконовая форма, в которую затем заливается пластик или воск.

– Мы выяснили, что 3D-печать – незаменимое решение при производстве продукции с использованием металлического и пластикового литья. Можете привести пример создания конкретной детали?

– Возьмем корпус обыкновенного телефона из пластика. Во-первых, он делится на две половины, нижнюю и верхнюю. Чтобы произвести одну из половин, надо сделать матрицу и пуансон – это оснастка для литья пластика под давлением. Металлическая форма, состоящая из двух половин, смыкается, затем в нее под давлением подается пластик, который принимает форму внутренней геометрии изделия.
При традиционном производстве на станке с ЧПУ вытачивают внешнюю и внутреннюю форму каждой половины. Но если у нас есть 3D-принтер, мы печатаем сразу готовое изделие целиком, металлическую оснастку делать не нужно. Мало того что ее долго изготавливать, она будет баснословно дорогая для тиража в десять штук. Таким образом, выгода 3D-печати очевидна – отпадает необходимость фрезерования для получения оснастки.

Телефон – продукт массового производства, и речь идет не о десяти, а о тысячах изделий. Как раз в этом случае нужны матрица и пуансон, и постоянная штамповка большого тиража. Кроме того, если понадобится внести какое-то небольшое изменение в конструкцию, мы можем оперативно исправить CAD-модель, сразу напечатать прототип и проверить его на собираемость, посмотреть, правильно ли мы разработали геометрию.

– При создании выплавляемых и выжигаемых мастер-моделей для литья с помощью 3D-принтера используется, соответственно, воск и фотополимер (технология печати MJP, технология литья QuickCast). Как выглядит производственная цепочка с использованием этих материалов и в чем их различия?

– Использование напечатанных на 3D-принтере выплавляемых восковых и выжигаемых фотополимерных моделей имеет одну и ту же механику, немного различаются алгоритмы действия.

У нас есть напечатанная восковая модель. Мы создаем для нее корку (то есть форму, в которую заливается металл), обмазывая мелкодисперсным порошком толщиной не менее 6-8 мм. Вид материала и толщина корки зависит не только от сложности геометрии и габаритов изделия, но и от металла, который будет литься в будущую форму. Затем деталь помещается в печь. В печи воск выплавляется, а сама корка отвердевает, и у нас получается твердая форма для литья металла.

Восковая и фотополимерная модели перепускного клапана, напечатанные на 3D-принтерах

Что касается выжигаемого фотополимера, то мы так же кладем изделие в печь, но если воск вытапливается при температуре +200⁰С градусов, то фотополимер – при +950⁰С. Корка так же затвердевает, а материал, из которого была создана модель, выгорает.

Далее в получившуюся форму заливается раскаленный металл – это может быть и алюминий, и титан, и даже магний. Форма остывает, после чего корка разбивается молотком или вибромашиной, и мы получаем отливку.

Следующий этап – мехобработка. Она заключается в том, чтобы сделать поверхность детали более гладкой – обрезать литники, по которым заливался металл, зашлифовать их, снять излишнюю шероховатость изделия. На этой стадии нам также может потребоваться сверление отверстия или подгонка крепежных элементов – для этого применяются станки с ЧПУ для финальной обработки изделия до его конечного варианта (шлифовальные, пескоструйные, сверлильные и т.д.).

– От чего зависит выбор воска или фотополимера?

– Восковые машины относительно дешевы, при этом расходный материал – дорогой. С фотополимерными 3D-принтерами ситуация обратная. В сравнении с фотополимером воск достаточно хрупкий материал, это его недостаток. Но на сегодня восковая 3D-печать обеспечивает самую точную и самую гладкую поверхность. К тому же, восковое литье является традиционным для всех литейных производств в России. Соответственно, фотополимер подойдет там, где нужны модели большего размера, а прочность и детализация менее критичны. Пользователь должен сделать выбор, исходя из того, какие объемы он будет печатать, насколько часто он будет обращаться к прототипированию.

Так, на литейных предприятиях по всему миру, в России в том числе, активно используются профессиональные 3D-принтеры от 3D Systems, ведущего мирового производителя аддитивных установок. При этом ряд компаний имеют свой парк 3D-оборудования, другие заказывают услуги 3D-печати у подрядчиков.

– Мы подробно рассмотрели, как и в каких случаях выгодно использовать 3D-принтеры и 3D-сканеры. Если резюмировать: почему литейному предприятию необходимо внедрять аддитивные технологии?

– Для сокращения сроков производства при изготовлении опытных образцов и деталей малого тиража. Мы экономим и время, и деньги.

Вернемся к сравнению традиционного процесса с аддитивным. В первом случае это выглядит следующим образом:

1. Конструктор разрабатывает деталь, затем передает свою разработку инженеру.
2. Инженер адаптирует ее под методику производства вместе с технологом.
3. Дальнейшая адаптация заключается в том, что создается чертеж будущей формы матрицы и пуансона или чертеж, по которому деталь будет вытачиваться на фрезеровочном станке.
4. Затем на станке изготавливают матрицу и пуансон и отдают их на производство.

Так вот, с момента выдачи конструктором готового проекта инженеру и до получения формы, по которой будет отливаться изделие, проходит от полугода до года. И прошло, допустим, полгода, сделали десять опытных образцов, отдали их конструктору, он примерил эти металлические болванки, а они не совпадают с посадочными местами. Он понимает, почему они не совпадают, дорабатывает эту модель, и дальше цикл повторяется. Проходит еще минимум полгода до следующей примерки.

С помощью 3D-принтера конструктор фактически нажатием одной кнопки отправляет на печать свое изделие и отдает его сразу на производство в отливку. Срок сокращается с года или полугода до недели максимум. Это самое главное преимущество. Плюс, мы экономим значительные средства на изготовление формы. И, наконец, мы имеем возможность создавать изделия с геометрией любой сложности и, при необходимости, быстро оптимизировать конструкцию в программном обеспечении.

Литьё металлов. Методы и способы литья металлов.

Застывая, металл сохраняет форму того сосуда, в который был залит в жидком виде. Эту особенность металла человек использовал при получении изделий способом литья.

Наша страна издавна славилась искусными литейщиками. В Московском Кремле стоят «Царь-пушка» массой 40 т, отлитая Андреем Чоховым в конце XVI в., и «Царь-колокол» массой 200 т, изготовленный знаменитыми литейщиками Иваном и Михаилом Моториными в первой половине XVIII в. Во многих странах мира известны художественные изделия Каслинского чугунолитейного завода на Урале.

Одно из главных качеств литейного материала — способность растекаться, или жидкотекучесть. Металл или сплав в жидком состоянии должен быть подвижным и невязким, легко заполнять любую сложную форму, быстро проникать в её тончайшие извилины.

Из сплава с хорошей жидкотекучестью можно получить отливку с тонкими стенками. Если металл растекается медленно, то из него тонкостенная отливка не получится: он застынет, прежде чем заполнятся все извилины формы.

Чугунные чушки.

Один из лучших литейных материалов — чугун. Он обладает отличной жидкотекучестью. У стали жидкотекучесть меньше, и приходится прибегать к различным ухищрениям, чтобы заставить сталь заполнить всю форму.

Самый древний способ литья — литьё в песчано-глинистые формы, или литье в землю. Однако этот способ, хотя его и считают простым, требует большой предварительной работы.

Сначала в модельном цехе из дерева или металла делают модель будущей отливки. Она должна быть несколько большего размера, чем отливка, с учетом усадки металла при охлаждении. Модель (как и будущая форма) разъемная и состоит из двух половинок. В землеприготовительном отделении литейного цеха из земли и различных добавок готовят формовочную смесь. Если у отливки должно быть внутреннее отверстие или полость, то необходимо приготовить еще одну смесь — для стержней. Назначение стержней — заполнить те места в форме, которые в детали соответствуют отверстиям или полостям.

Формовочные и стержневые смеси готовят из специальных песков и глин и связующих материалов — растительных и минеральных масел, искусственной смолы, канифоли и т.д. Готовые смеси поступают к формовщикам, задача которых — изготовить литейные формы. Для этого на металлическую модельную плиту ставят одну половину модели разъёмом вниз (см. рис.), а затем металлический ящик без дна — опоку так, чтобы половина модели оказалась внутри него. Опоку плотно набивают формовочной землёй и переворачивают. Теперь половинка модели лежит в опоке разъёмом вверх. На эту опоку формовщик ставит ещё одну и скрепляет их штырями. Затем в верхнюю опоку устанавливают два деревянных конуса (на их месте в готовой форме останутся два отверстия для заливки металла и для выхода воздуха и газов) и плотно заполняют ее формовочной смесью.

Теперь осталось вынуть из земли деревянную модель. Для этого опоки разъединяют и из каждой вынимают половинки модели. В земле остаются чёткие отпечатки двух половин детали (см. рис.). Их, а также заранее приготовленный стержень покрывают особой краской, чтобы жидкий металл не «пригорел» — не прилип к стенкам формы. В форму вставляют стержень и прорезают в земле канавку, соединяющую отверстие для заливки металла с полостью формы, — литниковый ход. На конец, верхнюю опоку снова кладут на нижнюю, соединяют их, и форма готова. Когда она немного подсохнет, в неё можно заливать металл.

Чугун для литья приготовляют в специальных печах — вагранках. Если отливки стальные, то сталь для них плавят в конвертерах, мартеновских и электрических печах. Для расплавления цветных металлов существуют свои плавильные печи.

Жидкий металл заливают в форму из ковша, который движется вдоль ряда опок, а иногда опоки на конвейере движутся мимо ковша. Когда металл застывает, отливку вынимают из формы. С помощью наждачных станков, пескоструйных или дробеструйных аппаратов отливку очищают от приставшей формовочной земли.

Вместе с тем давно уже появились и успешно используются другие, более совершенные способы литья. Один из них литье в кокиль — металлическую форму (см. рис.), состоящую из двух половин, в одну из них перед заливкой металла вставляют стержни. Затем обе половины кокиля скрепляют между собой и заливают жидкий металл. Здесь он очень быстро затвердевает, и уже через несколько минут можно вынимать деталь и заливать новую порцию металла. С помощью одного кокиля получают сотни и тысячи одинаковых отливок.

Литьё металла в кокиль.

Однако таким способом можно получать отливки только из металлов или сплавов, обладающих хорошей жидкотекучестью. А для стали, например, у которой жидкотекучесть меньше, применяют литье под давлением (см. рис.). Жидкий металл под давлением сжатого воздуха или поршня хорошо заполняет любую сложную форму. Однако обыкновенный кокиль не выдерживает большого давления и разрушается. В связи с этим формы для этого способа литья — пресс-формы — делают из прочной стали. Машины для литья под давлением выпускают по нескольку тысяч отливок за смену.

Издавна известен способ литья по выплавляемым моделям, сделанным не из дерева или металла, а из легкоплавкого воскообразного (парафин, стеарин) вещества (см. рис.). Такую модель покрывают огнеупорной оболочкой и заформовывают в опоку. Горячий металл расплавляет воск и заполняет оболочку, в точности повторяя форму модели. При этом способе модель не надо извлекать из формы, что позволяет получать очень точные отливки. Кроме того, этот процесс легко автоматизировать.

Иногда, когда отливка не требует большой точности, ее получают литьем в оболочковые формы (см. рис.). Их делают из смеси мелкого кварцевого песка с особой порошкообразной смолой. Этой смесью засыпают половинки металлических моделей, установленных на нагретой до 200—250°С металлической плите. Под действием тепла смола расплавляется, обволакивает и скрепляет зерна песка. На модели образуется песчано-смоляная корка. Затем модели вынимают, а плиту с оболочками ставят в печь, где они окончательно затвердевают. Наконец 2 полуформы оболочки соединяют между собой и заливают в полость металл.

Так же широко распространено центробежное литьё, с помощью которого делают отливки, имеющие форму тел вращения, — трубы, шестерни, зубчатые ободы и т. п. Металл заливают во вращающуюся металлическую форму, при вращении он прижимается к стенкам формы, и это позволяет получать отливки высокой точности.

Один из современных способов — электрошлаковое литьё. В этом случае сначала получают жидкий металл методом электрошлакового переплава. Бездуговой переплав металлических электродов осуществляется за счет теплоты, выделяющейся при прохождении электрического тока через расплав электропроводящего шлака. Затем жидкий металл (не соприкасаясь с воздухом) поступает в водоохлаждающий медный кристаллизатор, являющийся литейной формой. Электрошлаковое литье применяется в основном для изготовления сравнительно несложных отливок, например коленчатых валов.

Литье в песчаные формы. Заливка форм. Охлаждение отливок и их обработка

Заливка форм

Перед заливкой металла в форму ее собирают. Сначала сжатым воздухом из формы выдувают пыль и сор. Устанавливают стержни. Нижнюю полуформу накрывают верхней. Опоки скрепляют друг с другом или на верхнюю опоку устанавливают груз, после чего форма готова к заливке.

Заливка в зависимости от технологического процесса производства отливок может производиться в неподвижную форму или форму, движущуюся по конвейеру. На движущемся конвейере заливку осуществляют со специальной платформы, которая движется синхронно и параллельно с конвейером. Жидкий металл заливают в форму из литейных ковшей, как правило, чайникового типа или через заливочно-дозирующие устройства.

В зависимости от размера отливаемых деталей ковши имеют емкость: ручные до 60 кг, монорельсовые до 1 т, крановые 3 – 100 т. На рис. 153 представлена схема поворотного ковша ручного типа.

Рисунок 153 — Литейный ковш чайникового типа

Ковш подвешен на траверзе подъемного устройства, которое перемещает ковш от плавильной печи к участку заливки. Ковш имеет носок 1, через который струя металла поступает в форму. Наклон, поворот ковша осуществляется с помощью ручного штурвала 2 с червячным самотормозящимся механизмом 3. Для того чтобы задержать при разливке шлак и не допустить попадания его в форму, перед носком в ковше устанавливают перегородку, задерживающую шлак.

На рис. 154 представлена схема стопорного ковша. Такие ковши могут иметь значительную емкость. В днище ковша установлен стопорный стакан с отверстием 2, на стопорном стержне 3, защищенном от воздействия расплава огнеупорными стопорными катушками, на конце навинчивается стопорная пробка 1, достаточно плотно притертая к стопорному стакану.

При нижнем положении стопорное отверстие плотно закрыто и не допускает вытекания жидкого металла. При подъеме стопорного стержня вверх, который осуществляется вручную с помощью рычажного механизма 4, открывается проход для расплава, и металл поступает из ковша в форму.

При разливке из стопорного ковша в форму поступает струя металла без шлака, так как шлаковый слой располагается над металлом. Еще более совершенным является ковш с шиберным затвором, располагающимся под днищем ковша. Основой шиберного затвора являются две огнеупорные плиты, одна из которых неподвижная, другая подвижная. В одном положении отверстия в плитах не сообщаются друг с другом и затвор в этом случае закрыт, в другом случае отверстия сообщаются друг с другом и затвор открыт. Подробнее об устройстве такого ковша сказано в разделе сталеплавильного производства (разливка стали). При производстве мелкого литья на конвейере металл из печи выпускают в раздаточный ковш большой емкости, а из него уже по мере надобности переливают в разливочные небольшие ковши.

Небольшие ковши емкостью до 500 кг футеруют обмазкой огнеупорным составом из кварцевого песка и глины или из кварцевого и шамотного порошка и глины. Ковши большей емкости футеруются шамотным кирпичом.

Автоматические заливочно-дозирующие устройства

Эти устройства одновременно выполняют заливку металла и дозирование порции расплава. В электромеханических устройствах дозирование порций металла регулируют наклоном ковша или открыванием стопора или шибера. В пневматических устройствах порцию расплава вытесняют из промежуточного ковша-копильника сжатым воздухом. Изменяя давление газа, регулируют объем заливаемого в форму металла, рис. 155.

Большое значение при заливке металла имеет температура расплава. Заливаемый в формы металл всегда перегрет над температурой ликвидуса, т.е. температурой начала кристаллизации. Величина перегрева зависит от его влияния на структуру и механические свойства готового металла, от толщины стенок и размера отливки, свойств материала формы, жидкотекучести сплава. Основное требование состоит в том, чтобы расплав заполнил все полости формы. Для низкоуглеродистых и углеродистых сталей достаточен перегрев в 30 – 60 °С, для тонкостенных отливок он увеличивается до 100 °С, еще выше перегрев для высоколегированных сталей. В среднем температура заливки стали изменяется от 1520 °С до 1620 °С.

При отливке чугунных деталей температура разливки 1300 – 1450 °С, перегрев составляет сотни градусов; при отливке деталей из ковкого и высокопрочного чугуна перегрев выше на 60 – 70 °С. Латунные и бронзовые отливки отливают из металла, перегретого на 100 – 200 °С при 1000 – 1200 °С, а алюминиевые и магниевые сплавы при 700 – 800 °С.

Охлаждение отливок и их обработка

После окончания заливки отливка охлаждается в форме. Время охлаждения определяется процессами затвердевания металла, видом сплава, массой отливки, толщиной сечений. Стальные отливки охлаждают в форме до 500 – 700 °С, чугунные до 400 – 500 °С, отливки из цветных сплавов до более низких температур.

Для выбивки отливки форму устанавливают на выбивную решетку, которая приводится в движение механизмом и совершает колебательные движения вверх и вниз. В каждом цикле колебаний форма подбрасывается вверх и при падении ударяется об опорную раму. При ударе набивная масса высыпается, и отливка освобождается от набивной смеси. На конвейерных линиях отливки выдавливаются из формы, а потом освобождаются от остатков земли на выбивных решетках. Остатки стержней либо вырубают из отливок пневмозубилами или удаляют на специальных вибрационных машинах или электрогидравлических установках.

Прибыли и литники отделяют от отливки зубилами, абразивными кругами, ленточными пилами или с помощью газовой, электродуговой резки.

Для очистки поверхности отливок применяют метод барабанной очистки. В барабан вместе с отливками иногда загружают звездочки из чугуна. При вращении барабана отливки трутся друг о друга и о звездочки, при этом удаляется прилипшая к отливкам формовочная смесь.

Другим способом очистки является дробеструйная или дробеметная очистка. На поверхность отливки подается под давлением струя воды или воздуха совместно с чугунной дробью. Операцию проводят в барабанах или в специальных камерах. Очистка может производиться периодически или в камерах непрерывного действия. Мелкие отливки очищают вибрационным методом. Отливки и абразивный наполнитель загружают в контейнер и подвергают встряхиванию с частотой до 3000 колебаний в минуту.

Окончательную зачистку поверхности производят с помощью абразивных кругов, а небольшие отливки зачищают на шлифовальных станках.

Литые детали имеют крупнозернистую структуру, высокую твердость, низкие прочностные свойства.

Для получения необходимой структуры и свойств отливки подвергают термической обработке: отжигу, нормализации, закалке.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
gmnu-nazarovo.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: