Виды кристаллических решеток металлов

Кристаллическое строение металлов

Металлы — один из самых распространенных веществ в материальной культуре человека. Тысячелетиями медь, железо, серебро и золото были основным материалом для производства оружия, инструментов, ответственных частей транспорта и механизмов, деталей домашней утвари и украшений. В XIX веке, с освоением технологии получения чугуна, металлы пришли в строительство и станкостроение. XX век был веком металлов.

В нашу жизнь вошли алюминий, титан, бор и многие более редкие металлы. Используя их, человечество шагнуло в небо, космос и глубины океана. Металлы сделали возможным массовое производство домашней бытовой техники. В конце XX века пластмассы и композитные вещества ощутимо потеснили металлы с лидирующих позиций. Основные характеристики металлов — прочность, упругость и пластичность определяются их физико-химическими свойствами и атомным строением.

Основные группы металлов в промышленности

Индустрия делит металлы на большие группы:

  • Черные.
  • Цветные легкие.
  • Цветные тяжелые.
  • Благородные.
  • Редкоземельные и щелочные.

Черные металлы

В эту группу входят железо, марганец, хром и их сплавы. Группа также включает в себя стали, чугуны и ферросплавы. Эти вещества обладают хорошей электропроводностью и уникальными магнитными характеристиками.

Черные металлы покрывают до 90% мировой потребности в металлоизделиях.

Легкие цветные металлы

Отличаются низкой плотностью. Группа включает в себя алюминий, титан, магний. Эти реже встречаются, чем железо, и обходятся дороже в добыче руды и в производстве. Они используются там, где малый вес изделия или детали окупает ее большую стоимость – в самолетостроении, производстве электроники, в коммуникационной индустрии.

Легкие цветные металлы

Титан не вызывает отторжения со стороны иммунной системы и применяется в протезировании костной ткани.

Тяжелые цветные металлы

Это элементы с большим удельным весом, такие, как медь, олово, свинец, цинк и никель. Обладают хорошей электропроводностью.

Они широко используются как катализаторы реакций, в изготовлении электроматериалов, в электронике, на транспорте – везде, где требуются достаточно прочные, упругие и коррозионностойкие материалы.

Благородные металлы

В эту группу входят золото, серебро, платина, а также редко встречающееся рутений, родий, палладий, осмий, иридий. Они обладают наибольшим удельным весом, высокой коррозионной устойчивостью и высокой электрической и тепловой проводимостью.

На заре человечества золото, серебро и платина применялись как универсальный платежный инструмент и как средство накопления богатств. С развитием цифровой экономики и переходом платежей в виртуальность важнее стаи их уникальные физические свойства

Редкоземельные и щелочные

К редкоземельным относятся скандий, иттрий, лантан и еще 15 редких элементов. Эти элементы отличаются значительным удельным весом, высокой химической активностью и применяются в высокотехнологичных отраслях.

К щелочным относятся литий, калий, натрий и другие. Все они отличаются малым удельным весом и исключительной химической активностью и при реакции с водой образуют щелочи, широко применяемы в быту и промышленности в составе мыла и других моющих средств.

Классификация металлов по химическому составу

Химические свойства чистых элементов определяются строением атомов реальных металлов и прежде всего их атомным числом, характеризующим их способность реагировать с водородом, кислородом и другими элементами. Химические характеристики реально применяемых металлов могут сильно отличаться от параметров чистого вещества как в лучшую, так и в худшую сторону.

Нежелательные добавки называют примесями, а те, что вносятся преднамеренно для изменения параметров в нужную сторону — легирующими присадками.

Общепризнанной является классификация, основанная на указании главного компонента сплава.

Атомно — кристаллическое строение металлов

Внутреннее строение металлов и их характеристики определяют их физико-химические свойства. Электроны на внешних орбитах атомов слабо связаны с ядром и имеют отрицательный заряд. При наличии разницы потенциалов электроны мигрируют к положительному полюсу, создавая электрический ток. Это физическое явление обуславливает электропроводность.

Кристаллическое строение свойственно металлам и их сплавам в твердом фазовом состоянии. Атомы выстраиваются в определенную объемную структуру, называемую кристаллической решеткой.
Число атомов в вершинах и на гранях этой структуры, а также дистанция между ними определяют такие физические свойства металла, как электро- и теплопроводность, вязкость, текучесть и т.д.
Кристаллическое строение металлов и сплавов может быть двух типов:

  • Межатомная дистанция одинакова по всем направлениям. Это так называемое изотропное строение. При этом физические свойства кристалла также одинаковы по всем направлениям.
  • Межатомное расстояние по горизонтали и по вертикали разное. Такой кристалл называют анизотропным, и его физические параметры меняются в зависимости от направления.

Атомно-кристаллическое строение металлов

В реальном куске металлов, составленному из множества изолированных кристаллических фрагментов, атомно кристаллическое строение принадлежит к третьему типу — квазиизотропному. В среднем свойства такого куска близки к изотропным.
При выстраивании кристаллической решетки некоторые атомы не попадают на свое место, смещаются или теряются. В этом случае говорят о дефектах кристаллического строения металлов. Дефекты структуры отрицательно влияют на свойства изделия, особенно если оно должно быть монокристаллом, как, например, в электронике, лазерной технике и других отраслях высоких технологий.

Физические свойства металлов

Физические свойства определяются внутренним строением металлов.

Главное отличие металлов от других элементов — это их электропроводность и магнитные свойства.

И хотя ученые создали неметаллические материалы, обладающие другим строением, но такими же свойствами, как у металлов и сплавов, они еще слишком дороги для массового применения. Многие химически чистые металлы обладают недостаточной прочностью для практических применений, чтобы исправить ситуацию, в технике и строительстве используют их сплавы.

Читайте также:
Вытяжка для сварочного поста своими руками

Физические свойства металлов

Добавление тех или иных присадок приводит к росту прочность получаемого вещества в десятки раз по отношению к исходному элементу.

Электронное строение металлов и их особенности

Внутреннее строение реальных металлов определяет их физико-химические параметры.

Кристаллическая решетка металлов

Все металлы в твердом фазовом состоянии имеют кристаллическое строение. Это пространственное образование из многократно повторяющихся первичных структур называют кристаллической решеткой.
схема кристаллической решетки.

Кристаллическое строение металлов

Кристаллическое строение металлов и сплавов может быть двух типов:

  • Межатомная дистанция равна по всем направлениям. Это так называемое изотропное строение. При этом физические свойства кристалла также одинаковы по всем направлениям.
  • Межатомное расстояние по горизонтали и по вертикали разное. Такой кристалл называют анизотропным, его параметры зависят от направления.

В реальном куске металлов, который состоит из множества кристаллических фрагментов, атомно кристаллическое строение принадлежит к третьему типу — квазиизотропному. Усредненные параметры такого куска близки к изотропным.

Типы кристаллических решеток

Дистанцию соседними атомами называют параметром решетки, у разных металлов он составляет 2 — 6 ангстрем. Существуют три основных типа кристаллических решеток:

  • Кубическая: объемно-центрированная — включает в себя девять атомов. Свойственна железу, хрому, молибдену, и ванадию.
  • Кубическая гранецентрированная: включает в себя уже 14 атомов. Присуща меди, золоту, свинцу, алюминию.
  • Гексагональная: атомов уже 17 и размещены они наиболее плотно. Так кристаллизуются магний, цинк кадмий и другие.

Уникальная возможность железа заключается в том, что до 910°С оно имеет кубическую объемно-центрированную структуру, а при нагреве свыше этой температуры переходит к гранецентрированной.

Кристаллическое строение сплавов

Сплав это материал, состоящий из двух и более химических элементов. В его состав могут входить как металлы, так и неметаллы. Например, бронза — это сплав меди и олова, а чугун — сплав железа и углерода. Кроме основных, в состав могут входить и другие вещества, содержащиеся в небольших количествах. Если их добавляют специально и улучшают свойства материала, их называют легирующими присадками, если ухудшают — вредными примесями.
Кристаллическое строение сплавов сложнее, чем металлов.

Оно определяется взаимовлиянием компонентов при образовании кристалла, и принадлежит к трем подвидам:

  • Твердые растворы. Один элемент растворяется в другом. Ведущий элемент строит кристаллическую структуру, а атомы второстепенного элемента размещаются в объеме этой решетки.
  • Химическое соединение. Элементы химически реагируют друг с другом, образуя новое соединение. Из его молекул и составляется кристаллическая решетка.
  • Механическая смесь. Элементы сплава не реагируют друг с другом. Каждый строит свои кристаллические структуры, срастающиеся в независимые кристаллы. Сплав будет представлять собой затвердевшую смесь из множества кристалликов двух разных типов. Такое вещество будет иметь собственную температуру перехода в жидкую фазу.

Физические свойства сплавов могут заметно меняться при изменении процентного соотношения составляющих.

Кристаллизация сплавов

Первичная кристаллизация — это затвердевание расплава с образованием кристаллических решеток. Пространственные атомные и молекулярные структуры, возникающие в ходе такого процесса, оказывают решающее влияние на свойства получаемого сплава.

Сначала в остывающем расплаве возникают центры кристаллизации, вокруг них в ходе процесса и нарастают кристаллы, многократно повторяя структуру центра. В качестве центров кристаллизации могут выступать:

  • Первые образовавшиеся кристаллы в зонах локального охлаждения, чаще всего у стенок литейной формы.
  • Частички неметаллических примесей.
  • Тугоплавкие примеси, уже находящиеся в твердой форме.

Процесс кристаллизации металлов и сплавов

Кристаллы обычно растут в направлении роста градиента температуры. Если рост решеток не встречает физических препятствий, образуются ветвящиеся кристаллические структуры, напоминающие кораллы — дендриты. Если они растут из разных центров и встречаются в расплаве, то препятствуют росту друг друга и искажают свою форму. Такие искаженные кристаллы – это кристаллиты, или зерна. Совокупность отдельных зерен срастается в поликристаллическое тело.
Отдельные кристаллиты достигают размеров от одного до 10 000 микрон и по-разному развернуты в пространстве. На стыках отдельных кристаллитов образуется граничный слой, в котором кристаллические решетки разорваны. Такие слои обладают измененными химическими и физическими свойствами.

Решетки кристаллитов могут обладать разными дефектами структуры:

  • точечные;
  • линейные;
  • поверхностные;

Дефекты кристаллического строения металлов

Дефекты определяются отсутствием атома или группы атомов в вершинах или гранях кристаллической решетки, смещением этих атомов со своих мест или замещением атома или их группы атомами или молекулами примесей.

Кристаллические решетки металлов и их основные типы

Металлы и сплавы имеют кристаллическое строение. Это означает, что атомы в занимаемом ими пространстве расположены строго упорядоченно, находясь в определенных местах на вполне определенных расстояниях друг от друга. В пределах одного кристалла наблюдается повторяющаяся картина расположения атомов. Если соединить атомы воображаемыми линиями в трех взаимно перпендикулярных направлениях, то получится пространственная

кристаллическая решетка. Ее наименьшим структурным образованием является элементарная ячейка, контур которой представляет какое-нибудь составленное из атомов геометрическое тело, например куб или шестигранную призму. Элементарные ячейки, примыкая друг к другу и многократно повторяясь, образуют более крупные твердые тела правильной геометрической формы — кристаллы. Кристаллы, формирующиеся в процессе роста под воздействием окружающих кристаллов и имеющие поэтому неправильную геометрическую форму, называют кристаллитами. Кристаллиты в поликристаллическом теле, отделенные от других кристаллитов большеугловыми границами (см. подпараграф 1.5.3) и обладающие определенной кристаллографической ориентировкой, называют зернами.

Читайте также:
Браширование пола своими руками

Ориентировка ячеек в соседних зернах различна, а в пределах каждого зерна одинакова. Поэтому в кристаллической решетке зерен существует ближний и дальний порядки. Ближний порядок означает постоянство ближних атомов-соседей у каждого атома, а дальний — удаленных.

Наиболее простой геометрической формой кристаллической решетки металлов является кубическая. Эта форма решетки имеет две разновидности: объемно-центрированную кубическую (ОЦК) и гранецентрированную кубическую (ГЦК). На рис. 1.3, а, б показаны схемы этих решеток. У обоих типов рассматриваемых решеток основу ячеек составляют восемь атомов, образующих куб и находящихся в его вершинах. Остальные атомы находятся или в центре куба (один атом на пересечении диагоналей в решетке ОЦК), или в центре каждой из его граней (шесть атомов в решетке ГЦК).

Кристаллические ОЦК-решетки в числе прочих металлов имеют хром, ванадий, молибден. А ГЦК-рсшстки имеют алюминий, медь, никель и другие металлы. Характерными признаками кристаллической решетки являются параметр решетки, координационное число и плотность упаковки атомов. Параметром (или периодом) кристаллической решетки а считают межатомное расстояние в ячейке (см. рис. 1.3). Координационное число (к.ч.) определяет

Рис. 1.3. Основные тины кристаллических решеток

число ближайших соседей каждого атома. А под плотностью упаковки (п.у.) понимают число атомов, приходящихся на одну элементарную ячейку. Для решетки ОЦК п.у. = 2 (один атом в вершине куба, а второй в центре куба), к.ч. = 8 (например, для атома, расположенного в центре куба). Для решетки ГЦК п.у. = 4, к.ч. = 12. Параметр решетки а для ОЦК-решеток и ГЦК-решеток одинаков по всем трем направлениям в пространстве.

Таким образом, ГЦК-решетка является более плотной, чем ОЦК-решетка. От плотности упаковки кристаллической решетки зависит прочность металлов.

Однако наиболее плотной из рассматриваемых кристаллических решеток является гексагональная плотноупакованнаярешетка (ГПУ). Схема этой решетки представлена на рис. 1.3, в. Ячейка этой решетки представляет собой шестигранную призму с центрированными основаниями, между которыми на некотором расстоянии от центров трех граней расположены еще три атома. Характеристики решетки ГПУ: параметры решетки а и с (с > а); если с/а = 1,633, то к.ч. = 12, п.у. = 6. Решетку ГПУ имеют магний, цинк, бериллий и другие металлы.

Параметры кристаллических решеток металлов составляют от 0,2 до 0,7 нм (1 нм = 1(Г 9 м).

В ячейках кристаллических решеток атомы касаются друг друга внешними слоями электронных оболочек. Межатомные силы сцепления, обеспечивающие целостность кристаллической решетки, создаются электромагнитным взаимодействием, обусловленным наличием у атомов валентных электронов. У металлов, находящихся в твердом состоянии, валентные электроны, освобождаясь от своих атомов, движутся между атомами, которые становятся положительно заряженными ионами. Это объясняется тем, что внешние электроны металлов, в отличие от внешних электронов неметаллов, слабо связаны с ядром. Поэтому атомы металлов легко теряют внешние электроны, превращаясь в ионы. Освободившиеся электроны образуют так называемый электронный газ. Принадлежащие всему зерну свободные электроны, взаимодействуя с положительными ионами, обеспечивают целостность кристаллической решетки. Такая межатомная связь в кристаллической решетке получила название металлической. Металлическая связь может существовать как между одноименными атомами в чистых металлах, так и между разнородными — в сплавах. Металлическая межатомная связь не имеет направленного характера. Электроны электронного газа не связаны с отдельными ионами, а в одинаковой степени принадлежат всем ионам металла.

Благодаря наличию электронного газа металлы обладают высокими электро- и теплопроводностью, а также металлическим блеском. Под действием электрического поля свободные электроны

приобретают направленное движение, обеспечивающее протекание тока. Высокая теплопроводность металла обусловлена также участием свободных электронов (наряду с ионами) в передаче тепла. А характерный металлический блеск металлов обусловлен взаимодействием свободных электронов с электромагнитными световыми волнами.

Кристаллические решетки. Строение вещества

Темы кодификатора ЕГЭ: Вещества молекулярного и немолекулярного строения. Тип кристаллической решетки. Зависимость свойств веществ от их состава и строения.

Молекулярно-кинетическая теория

Все молекулы состоят из мельчайших частиц – атомов. Все открытые на настоящий момент атомы собраны в таблице Менделеева.

Атом – это мельчайшая, химически неделимая частица вещества, сохраняющая его химические свойства. Атомы соединяются между собой химическими связями. Ранее мы уже рассматривали виды химических связей и их свойства. Обязательно изучите теорию по теме: Типы химических связей, перед тем, как изучать эту статью!

Теперь рассмотрим, как могут соединяться частицы в веществе.

В зависимости от расположения частиц друг относительно друга свойства образуемых ими веществ могут очень сильно различаться. Так, если частицы расположены друг от друга далеко (расстояние между частицами намного больше размеров самих частиц), между собой практически не взаимодействуют, перемещаются в пространстве хаотично и непрерывно, то мы имеем дело с газом .

Читайте также:
Гибкая плитка своими руками

Если частицы расположены близко друг к другу, но хаотично, больше взаимодействуют между собой, совершают интенсивные колебательные движения в одном положении, но могут перескакивать в другое положение, то это модель строения жидкости .

Если же частицы расположены близко к друг другу, но более упорядоченно, и больше взаимодействуют между собой, а двигаются только в пределах одного положения равновесия, практически не перемещаясь в другие положения, то мы имеем дело с твердым веществом .

Большинство известных химических веществ и смесей могут существовать в твердом, жидком и газообразном состояниях. Самый простой пример – это вода. При нормальных условиях она жидкая, при 0 о С она замерзает – переходит из жидкого состояния в твердое, и при 100 о С закипает – переходит в газовую фазу – водяной пар. При этом многие вещества при нормальных условиях – газы, жидкости или твердые. Например, воздух – смесь азота и кислорода – это газ при нормальных условиях. Но при высоком давлении и низкой температуре азот и кислород конденсируются и переходят в жидкую фазу. Жидкий азот активно используют в промышленности. Иногда выделяют плазму, а также жидкие кристаллы, как отдельные фазы.

Очень многие свойства индивидуальных веществ и смесей объясняются взаимным расположением частиц в пространстве друг относительно друга!

Данная статья рассматривает свойства твердых тел, в зависимости от их строения. Основные физические свойства твердых веществ: температура плавления, электропроводность, теплопроводность, механическая прочность, пластичность и др.

Температура плавления – это такая температура, при которой вещество переходит из твердой фазы в жидкую, и наоборот.

Пластичность – это способность вещества деформироваться без разрушения.

Электропроводность – это способность вещества проводить ток.

Ток – это упорядоченное движение заряженных частиц. Таким образом, ток могут проводить только такие вещества, в которых присутствуют подвижные заряженные частицы. По способности проводить ток вещества делят на проводники и диэлектрики. Проводники – это вещества, которые могут проводить ток (т.е. содержат подвижные заряженные частицы). Диэлектрики – это вещества, которые практически не проводят ток.

В твердом веществе частицы вещества могут располагаться хаотично, либо более упорядоченно. Если частицы твердого вещества расположены в пространстве хаотично, вещество называют аморфным . Примеры аморфных веществ – уголь, слюдяное стекло.

Если частицы твердого вещества расположены в пространстве упорядоченно, т.е. образуют повторяющиеся трехмерные геометрические структуры, такое вещество называют кристаллом , а саму структуру – кристаллической решеткой . Большинство известных нам веществ – кристаллы. Сами частицы при этом расположены в узлах кристаллической решетки.

Кристаллические вещества различают, в частности, по типу химической связи между частицами в кристалле – атомные, молекулярные, металлические, ионные; по геометрической форме простейшей ячейки кристаллической решетки – кубическая, гексагональная и др.

В зависимости от типа частиц, образующих кристаллическую решетку , различают атомную, молекулярную, ионную и металлическую кристаллическую структуру .

Атомная кристаллическая решетка

Атомная кристаллическая решетка образуется, когда в узлах кристалла расположены атомы . Атомы соединены между собой прочными ковалентными химическими связями. Соответственно, такая кристаллическая решетка будет очень прочной, разрушить ее непросто. Атомную кристаллическую решетку могут образовывать атомы с высокой валентностью, т.е. с большим числом связей с соседними атомами (4 или больше). Как правило, это неметаллы: простые вещества — кремния, бора, углерода (аллотропные модификации алмаз, графит), и их соединения (бороуглерод, оксид кремния (IV) и др.). Поскольку между неметаллами возникает преимущественно ковалентная химическая связь, свободных электронов (как и других заряженных частиц) в веществах с атомной кристаллической решеткой в большинстве случаев нет. Следовательно, такие вещества, как правило, очень плохо проводят электрический ток, т.е. являются диэлектриками. Это общие закономерности, из которых есть ряд исключений.

Связь между частицами в атомных кристаллах: ковалентная полярная или неполярная.

В узлах кристалла с атомной кристаллической структурой расположены атомы.

Фазовое состояние атомных кристаллов при нормальных условиях: как правило, твердые вещества.

Вещества , образующие в твердом состоянии атомные кристаллы:

  1. Простые веществас высокой валентностью (расположены в середине таблицы Менделеева): бор, углерод, кремний, и др.
  2. Сложные вещества, образованные этими неметаллами: кремнезем (оксид кремния, кварцевый песок) SiO2; карбид кремния (корунд) SiC; карбид бора, нитрид бора и др.

Физические свойства веществ с атомной кристаллической решеткой:

прочность;

— тугоплавкость (высокая температура плавления);

— низкая электропроводность;

— низкая теплопроводность;

— химическая инертность (неактивные вещества);

— нерастворимость в растворителях.

Молекулярная кристаллическая решетка

Молекулярная кристаллическая решетка – это такая решетка, в узлах которой располагаются молекулы. Удерживают молекулы в кристалле слабые силы межмолекулярного притяжения (силы Ван-дер-Ваальса, водородные связи, или электростатическое притяжение). Соответственно, такую кристаллическую решетку, как правило, довольно легко разрушить. Вещества с молекулярной кристаллической решеткой – легкоплавкие, непрочные. Чем больше сила притяжения между молекулами, тем выше температура плавления вещества. Как правило, температуры плавления веществ с молекулярной кристаллической решеткой не выше 200-300К. Поэтому при нормальных условиях большинство веществ с молекулярной кристаллической решеткой существует в виде газов или жидкостей. Молекулярную кристаллическую решетку, как правило, образуют в твердом виде кислоты, оксиды неметаллов, прочие бинарные соединения неметаллов, простые вещества, образующие устойчивые молекулы (кислород О2, азот N2, вода H2O и др.), органические вещества. Как правило, это вещества с ковалентной полярной (реже неполярной) связью. Т.к. электроны задействованы в химических связях, вещества с молекулярной кристаллической решеткой – диэлектрики, плохо проводят тепло.

Читайте также:
Грунтовка цинкосодержащая по металлу

Связь между частицами в молекулярных кристаллах: межмолекулярные водородные связи, электростатические или межмолекулярные силы притяжения.

В узлах кристалла с молекулярной кристаллической структурой расположены молекулы.

Фазовое состояние молекулярных кристаллов при нормальных условиях: газы, жидкости и твердые вещества.

Вещества , образующие в твердом состоянии молекулярные кристаллы:

  1. Простые вещества-неметаллы, образующие маленькие прочные молекулы(O2, N2, H2, S8 и др.);
  2. Сложные вещества (соединения неметаллов) с ковалентными полярными связями(кроме оксидов кремния и бора, соединений кремния и углерода) — вода H2O, оксид серы SO3 и др.
  3. Одноатомные инертные газы (гелий, неон, аргон, криптони др.);
  4. Большинство органических веществ, в которых нет ионных связейметан CH4, бензол С6Н6 и др.

Физические свойства веществ с молекулярной кристаллической решеткой:

— легкоплавкость (низкая температура плавления):

— высокая сжимаемость;

— молекулярные кристаллы в твердом виде, а также в растворах и расплавах не проводят ток;

— фазовое состояние при нормальных условиях – газы, жидкости, твердые вещества;

— высокая летучесть;

— малая твердость.

Ионная кристаллическая решетка

В случае, если в узлах кристалла находятся заряженные частицы – ионы, мы можем говорить о ионной кристаллической решетке . Как правило, с ионных кристаллах чередуются положительные ионы (катионы) и отрицательные ионы (анионы), поэтому частицы в кристалле удерживаются силами электростатического притяжения . В зависимости от типа кристалла и типа ионов, образующих кристалл, такие вещества могут быть довольно прочными и тугоплавкими. В твердом состоянии подвижных заряженных частиц в ионных кристаллах, как правило, нет. Зато при растворении или расплавлении кристалла ионы высвобождаются и могут двигаться под действием внешнего электрического поля. Т.е. проводят ток только растворы или расплавы ионных кристаллов. Ионная кристаллическая решетка характерна для веществ с ионной химической связью. Примеры таких веществ – поваренная соль NaCl, карбонат кальция – CaCO3 и др. Ионную кристаллическую решетку, как правило, в твердой фазе образуют соли, основания, а также оксиды металлов и бинарные соединения металлов и неметаллов.

Связь между частицами в ионных кристаллах: ионная химическая связь.

В узлах кристалла с ионной решеткой расположены ионы.

Фазовое состояние ионных кристаллов при нормальных условиях: как правило, твердые вещества.

Химические вещества с ионной кристаллической решеткой:

  1. Соли (органические и неорганические), в том числе соли аммония (например, хлорид аммония NH4Cl);
  2. Основания;
  3. Оксиды металлов;
  4. Бинарные соединения, в составе которых есть металлы и неметаллы.

Физические свойства веществ с ионной кристаллической структурой:

— высокая температура плавления (тугоплавкость);

— растворы и расплавы ионных кристаллов – проводники тока;

— большинство соединений растворимы в полярных растворителях (вода);

— твердое фазовое состояние у большинства соединений при нормальных условиях.

Металлическая кристаллическая решетка

И, наконец, металлы характеризуются особым видом пространственной структуры – металлической кристаллической решеткой, которая обусловлена металлической химической связью . Атомы металлов довольно слабо удерживают валентные электроны. В кристалле, образованном металлом, происходят одновременно следующие процессы: часть атомов отдает электроны и становится положительно заряженными ионами; эти электроны хаотично перемещаются в кристалле; часть электронов притягивается к ионам. Эти процессы происходят одновременно и хаотично. Таким образом, возникают ионы , как при образовании ионной связи, и образуются общие электроны , как при образовании ковалентной связи. Свободные электроны перемещаются хаотично и непрерывно по всему объему кристалла, как газ. Поэтому иногда их называют « электронным газом ». Из-за наличия большого числа подвижных заряженных частиц металлы проводят ток, тепло. Температура плавления металлов сильно варьируется. Металлы также характеризуются своеобразным металлическим блеском, ковкостью, т.е. способностью изменять форму без разрушения при сильном механическом воздействии, т.к. химические связи при этом не разрушаются.

Связь между частицами : металлическая химическая связь.

В узлах кристалла с металлической решеткой расположены ионы металлов и атомы.

Фазовое состояние металлов при обычных условиях: как правило, твердые вещества (исключение — ртуть, жидкость при обычных условиях).

Химические вещества с металлической кристаллической решеткой — простые вещества-металлы.

Физические свойства веществ с металлической кристаллической решеткой:

— высокая тепло- и электропроводность;

— ковкость и пластичность;

— металлический блеск;

— металлы, как правило, нерастворимы в растворителях;

— большинство металлов – твердые вещества при нормальных условиях.

Сравнение свойств веществ с различными кристаллическими решетками

Тип кристаллической решетки (или отсутствие кристаллической решетки) позволяет оценить основные физические свойства вещества. Для примерного сравнения типичных физических свойств соединений с разными кристаллическими решетками очень удобно использовать химические вещества с характерными свойствами. Для молекулярной решетки это, например, углекислый газ, для атомной кристаллической решетки — алмаз, для металлической — медь, и для ионной кристаллической решетки — поваренная соль, хлорид натрия NaCl.

Сводная таблица по структурам простых веществ, образованных химическими элементами из главных подгрупп таблицы Менделеева (элементы побочных подгрупп являются металлами, следовательно, имеют металлическую кристаллическую решетку).

Читайте также:
Антиржавчина для металла

Итоговая таблица связи свойств веществ со строением:

Типы кристаллических решеток металлов

Все металлы являются кристаллическими телами, имеющими определенный тип кристаллической решетки, состоящей из малоподвижных положительно заряженных ионов, между которыми движутся свободные электроны (так называемый электронный газ). Такой тип структуры называется металлической связью.

Тип решетки определяется формой элементарного геометрического тела, многократное повторение которого по трем пространственным осям образует решетку данного кристаллического тела.

Металлы имеют относительно сложные типы кубических решеток – объемно центрированная (ОЦК) и гранецентрированная (ГЦК) кубические решетки.

Кубическая (1 атом на ячейку), а)

Объемно-центрированная кубическая (ОЦК) (2 атома на ячейку), б)

Гранецентрированная кубическая (ГЦК) (4 атома на ячейку), в)

Гексагональная плотноупакованная (ГП) (6 атомов на ячейку), г)

Рис. 2. Основные типы кристаллических решеток металлов

Основу ОЦК-решетки составляет элементарная кубическая ячейка (рис. 2, б), в которой положительно заряженные ионы металла находятся в вершинах куба, и еще один атом в центре его объема, т. е. на пересечении его диагоналей. Такой тип решетки в определенных диапазонах температур имеют железо, хром, ванадий, вольфрам, молибден и др. металлы.

У ГЦК-решетки (рис. 2, в) элементарной ячейкой служит куб с центрированными гранями. Подобную решетку имеют железо, алюминий, медь, никель, свинец и др. металлы.

Третьей распространенной разновидностью плотноупакованных решеток является гексагональная плотноупакованная (ГПУ, рис. 2, г). ГПУ-ячейка состоит из отстоящих друг от друга на параметр с параллельных центрированных гексагональных оснований. Три иона (атома) находятся на средней плоскости между основаниями.

У гексагональных решеток отношение параметра с/а всегда больше единицы. Такую решетку имеют магний, цинк, кадмий, берилий, титан и др.

Компактность кристаллической решетки или степень заполненности ее объема атомами является важной характеристикой. Она определяется такими показателями как параметр решетки, число атомов в каждой элементарной ячейке, координационное число и плотность упаковки.

Параметр решетки – это расстояние между атомами по ребру элементарной ячейки. Параметры решетки измеряется в нанометрах (1 нм = 10 -9 м =10 A). Параметры кубических решеток характеризуются длиной ребра куба и обозначаются буквой а.

Для характеристики гексагональной решетки принимают два параметра – сторону шестигранника а и высоту призмы с. Когда отношение с/а =1,633, то атомы упакованы наиболее плотно, и решетка называется гексагональной плотноупакованной (рис. 1, г). Некоторые металлы имеют гексагональную решетку с менее плотной упаковкой атомов (с/а > 1,633). Например, для цинка с/а = 1,86, для кадмия с/а = 1,88.

Параметры а кубических решеток металлов находятся в пределах от 0,286 до 0,607 нм. Для металлов с гексагональной решеткой а лежит в пределах 0,228-0,398 нм, а с в пределах 0,357-0,652 нм.

Параметры кристаллических решеток металлов могут быть измерены с помощью рентгеноструктурного анализа.

При подсчете числа атомов в каждой элементарной ячейке следует иметь в виду, что каждый атом входит одновременно в несколько ячеек. Например, для ГЦК-решетки, каждый атом, находящийся в вершине куба, принадлежит 8 ячейкам, а атом, центрирующий грань, двум. И лишь атом, находящийся в центре куба, полностью принадлежит данной ячейке.

Рис. 3. Координационное число в различных кристаллических решетках для атома А: а) – объемноцентрированная кубическая (К 8); б) – гранецентрированная кубическая (К 12); в) – гексагональная плотноупакованная (Г 12)

Таким образом, ОЦК- и ГЦК-ячейки содержат соответственно 2 и 4 атома.

Под координационным числом понимается количество ближайших соседей данного атома.

В ОЦК решетке (рис. 3, а) атом А (в центре) находится на наиболее близком равном расстоянии от восьми атомов, расположенных в вершинах куба, т. е. координационное число этой решетки равно 8 (К 8).

В ГЦК решетке (рис. 3, б) атом А (на грани куба) находится на наиболее близком равном расстоянии от четырех атомов 1, 2, 3, 4, расположенных в вершинах куба, от четырех атомов 5, 6, 7, 8, расположенных на гранях куба, и, кроме того, от четырех атомов 9, 10, 11, 12, принадлежащих расположенной рядом кристаллической ячейке. Атомы 9, 10, 11, 12 симметричны атомам 5, 6, 7, 8. Таким образом, ГЦК решетки координационное число равно 12 (К 12).

В ГПУ решетке при с/а = 1,633 (рис. 3, в) атом А в центре шестигранного основания призмы находится на наиболее близком равном расстоянии от шести атомов 1, 2, 3, 4, 5, 6, размещенных в вершинах шестигранника, и от трех атомов 7, 8, 9, расположенных в средней плоскости призмы. Кроме того, атом А оказывается на таком же расстоянии еще от трех атомов 10, 11, 12, принадлежащих кристаллической ячейке, лежащей ниже основания. Атомы 10, 11, 12 симметричны атомам 7, 8, 9.

Следовательно, для ГПУ решетки координационное число равно 12 (Г 12).

Плотность упаковки представляет собой отношение суммарного объема, занимаемого собственно атомами в кристаллической решетке, к ее полному объему. Различные типы кристаллических решеток имеют разную плотность упаковки атомов. В ГЦК решетке атомы занимают 74 % всего объема кристаллической решетки, а межатомные промежутки (“поры”) 26 %. В ОЦК решетке атомы занимают 68 % всего объема, а “поры” 32 %. Компактность решетки зависит от особенностей электронной структуры металлов и характера связи между их атомами.

Читайте также:
Гидравлический пресс с электроприводом своими руками

От типа кристаллической решетки сильно зависят свойства металла.

У некоторых металлов кристаллическая решетка может изменяться при изменении температуры. Это явление называется полиморфизмом или аллотропией. Полиморфизм может вызывать изменение свойств.

15 главных свойств металлической кристаллической решетки

Что представляет собой металлическая кристаллическая решетка: промышленное подразделение металлов + их атомно-кристаллическое строение + понятие, классификация и свойства металлической кристаллической решетки + особенности решетки у сплавов + разбор термина в контексте сварочного процесса

Взглянув вокруг себя, вы наверняка заметите парочку вещиц с содержанием металлов. Из-за повсеместного использования данных элементов, знать базовую информацию по ним обязан каждый.

В сегодняшней статье я расскажу, что такое металлическая кристаллическая решетка + предоставлю исчерпывающую информацию в отношении кристаллической классификации металлических веществ вообще.

Понятие кристаллической решетки + классификация

Перед углублением в сложные темы по химии и физике школьной программы, я хотел бы выдать вам исчерпывающую информацию в отношении терминологии и классификации металлических элементов сквозь призму промышленности.

1) Промышленное подразделение металлов + их атомно-кристаллическое строение

Начало эры металлов началось в 20 веке. Медь, железо, серебро и прочие элементы стали неотъемлемой частью быта и промышленности населения большинства развитых стран. Базовые характеристики металлов, такие как упругость, пластичность и прочность, определяются их атомным + кристаллическим строением.

Знание этих свойств позволит умело оперировать свойствами и применять их для получения эталонных комбинаций элементов. В индустриальном плане металлы подразделяют на 5 больших коопераций . Детальнее по каждой из них я расскажу в отдельной таблице.

Группа Описание Распространение (из 5 ★)
Черные В категории расположилось большинство распространенных металлов планеты, такие как хром и железо. Сюда же включены и сплавы из комбинаций черных металлов по типу ферросплавов. Мировое использование черных металлов составляет 88% всей мировой потребности. ★★★★★
Цветные (легкие) Магний, титан и прочие элементы с низким показателем плотности. По добыче дороже черных + встречаются в природе по залежам реже. Применяются в точном строительстве, и для деталей, где их применение финансово обосновано. ★★★★
Цветные (тяжелые) Отличительная черта – повышенный удельный вес + превосходная проводимость электрического тока. Применяются в качестве реакционных катализаторов при производстве плат и прочей электронике. ★★★
Благородные Защита от коррозии и малый удельный вес. В современном обществе, приоритетно, используются как инструмент для накопления финансов странами и украшения. Яркие представители –платина и золото. ★★
Редкоземельные Итрий, лантан и прочие химические элементы редкоземельного типа из группы металла. Имеют весомый удельный вес и очень активны химически, что обуславливает их использование в приборостроении и смежных направлениях. ★★★

Выделяют еще и щелочные металлы, но обычно их предпочитают относить в одну группу с редкоземельными, ибо по базовым характеристикам они весьма похожи между собой. Натрий, литий и прочие элементы группы при химических реакциях с водой образуют щелочи – отсюда и название группы. Используются при производстве всяческих моющих.

Обратите внимание: атомно-кристаллическое строение металлов напрямую влияет на их физические и химические свойства. Особенно важную роль в промышленности отыгрывает параметр электропроводимости.

Кристаллическое строение характерно металлическим элементам, которые пребывают в твердой фазе состояния. Атомы самостоятельно располагаются в четкой (иногда расплывчатой) геометрической фигуре объемного типа. Получаемые соединения и местоположения атомов принято называть кристаллической решеткой. С научной точки зрения термин подается практически также.

Кристаллическая решетка (КР) – сетчатый геометрический образ для исследований структуры кристаллов. Состоит из узлов, в которых могут располагаться молекулы/ионы/атомы, и соединений этих элементов.

Какие параметры используют при исследовании:

  • ЕКР;
  • константа КР;
  • плотность упаковки;
  • значение координации.

Металлическая кристаллическая решетка – это совокупность из элементарных ячеек, определяющая симметричные свойства всей структуры в целом. Признаки по структурным частям кристаллической решетки описываются за счет 3 правил Бреве.

2) Классификация кристаллических решеток

Тип КР Особенности
Ионная По названию понятно, что узловыми элементами структуры являются ионы. Связываются между собой ячейки за счет электростатики, что придает ИКР электронейтральность. Отсутствие насыщенности с направленностью характеризует решетку крупными числами координации. По физике – – большая твердость, тугоплавкость и нелетучесть. Также ионные соединения характеризуются повышенной ломкостью. Даже мелкие сдвиги приводят к разрушению огромной площади КР.
Атомная Ячейки КР соединяются между собой за счет связи ковалентного типа. Здесь идет подразделение на 3 категории в зависимости от структуры – каркас (алмаз), слоистость (графит) и цепочка (асбест). К базовым физическим свойствам атомных кристаллических решеток отнесу высокий запас твердости, тугоплавкость, нерастворимость в воде и отсутствие летучести. В своем большинстве, АКР характерная для сложных веществ по типу оксида алюминия или оксида кремния.
Молекулярная По узлам структуры располагаются молекулы, а их соединение образуется за счет все тех же сил молекулярного типа. Их часто называют водородными или вандерваальсовскими связями. Простейшими примером веществ с молекулярной кристаллической решёткой является лед и йод.

Кристаллическая структура характерна не только для чистых веществ, но и разнообразных соединений неорганики. Особенно это актуально для металлических соединений по типу сплавов. Учитывая распространение металлов в промышленности и бытовой сфере, разбору понятия металлической кристаллической решетки нужны уделить особое внимание. Чем я дальше и займусь.

Что такое металлическая кристаллическая решетка: обобщенная терминология и свойства

Первые – ионы с положительным зарядом, а вторые – нейтральные атомы. Между узлами КР свободно передвигаются относительно свободные электроны. Со схемой металлической решетки можете ознакомиться на рисунке выше.

1) Особенности строения и классификация металлической кристаллической решетки

В зависимости от межатомного расстояния, кристаллические соединения в сплавах и чистых структурах металлов могут разбиваться на 2 подвида – изотропные и анизотропные. В первом случае расстояние между ионами и атомами в узлах структуры равно. Колебания могут составлять от 0.1% до 3%, не более. Если расстояние между узлами кристаллической решетки вдоль и вверх различается, получаемый кристалл относят к анизотропному. Четкое представление об параметрах таких КР можно получить только после изучения направления.

Важно: на практике практически нереально встретить металлы либо их сплавы, которые будут располагать четкой однородной структурой. В 95%+ случаев, металлический элемент из множества кристаллов имеет разнобойной кристаллической решетке. По данной причине была создана еще одна категория в кристаллическом строении, именуемая квазиизотропная.

Второй параметр в металлических кристаллических решетках, который дал толчок к вводу еще одной классификации, – это межатомное расстояние близлежащих элементов. Здесь используется обособленная единица измерения — ангстрем. Среднее значение для различных металлов в чистом виде составляет порядка 3-7 ангстрем.

Классификация КР по типу:

  1. Куб. Решетка имеет правильную форму с объемным центрированием. Число содержащихся узлов соединения – 9. Пример металла с кубической кристаллической решеткой является железо.
  2. Куб с центрированными гранями. Здесь уже число узлов соединения увеличено до четырнадцати. Гранецентрированная КР имеется у золота, свинца и прочих цветных + драгоценных металлах.
  3. Гексагональ. Кристаллическая решетка содержит уже целых 17 узлов с крайне плотным размещением друг к другу. Актуальна такая геометрия цинку, магнию и так далее.

Особенно поражает железо, ведь при нагревании выше температуры в 920 градусов по Цельсию, его кристаллическая решетка преобразуется из обычной кубической в кубическую с центрированными гранями.

2) Свойства металлической кристаллической решетки

К общим физическим свойствам металлов я отнесу:

  • ковкость;
  • пластичность;
  • тягучесть;
  • характерный металлический отблеск;
  • теплопроводимость;
  • электропроводимость.

Отмечу, что физические свойства для различных чистых элементов в металлах могут иметь большую разницу. К примеру, ряд «Ag Cu Au Al Mg Zn Fe РЬ Hg» имеет меньшее значение проводимости тепла и тока. Сюда же отнесу разделение на цветные и черные металлы, а также классификацию в зависимости от плотности (легкие и тяжелые), твердости (мягкие и твердые) и температуры плавления (легкоплавкие и тугоплавкие).

К общим химических свойствам металлов отнесу:

  • являются восстановителями;
  • взаимодействие с кислородом и образование в результате оксидов;
  • взаимодействие с галогенами;
  • активные металлы могут вступать в реакцию с водородом;
  • получение сульфидов при химических реакциях с серой;
  • часть элементов среди металлов могут сотрудничать с азотом, выделяя нитриды;
  • получение карбидов при контакте с углеродом;
  • фосфиды – результат связей с фосфором;
  • получение интерметаллических соединений за счет взаимодействия между металлическими компонентами.

Особенно интересным химическим взаимодействием я считаю соитие металлов при воздействии температур. В процессе нагрева элементы растворяются друг в друге, и, как результат, мы получаем металлический сплав. О них я далее также скажу пару слов.

3) Металлическая кристаллическая решетка в сплавах

Обратите внимание: если вкрапливаемый элемент в сплав приносит ему практическую пользу (например, улучшает коррозийную стойкость), такую присадку называют легирующей, в обратном случае получаем вредную примесь.

В металлургии имеется такое понятие как механическая смесь – это разновидность сплава, у которого кристаллические решетки компонентов не способны взаимно раствориться. Получаемое соединение мало используется в металлургии, но как явление все же существует.

Качественная взаимосвязь компонентов характерна для:

  • твердых растворов. Когда атомы элемента-помощника внедряются внутрь кристаллической решетки базового компонента соединения;
  • химические сплавы. Наиболее качественные метод соединения металлов. Результатом становится новая кристаллическая решетка, образованная из молекул обоих компонентов в более-менее равной мере.

В зависимости от долевого вкрапления легирующих добавок, физика и химия поведения сплавов может значительно отличаться друг от друга. Особенно чувствительны в этом плане компоновки из металлов и неметаллов.

Конечный этап процесса химического соединения металлических элементов называют первичной кристаллизацией. После нагрева элемента до нужной температуры (температура плавления), наступает этап смешивания и последующее остывание. На последней стадии происходит образование центральных элементов кристаллизации, вокруг которых и собирается полноценная кристаллическая решетка сплава из повторяющихся ячеек центра.

Центральными элементами могут быть:

  • ячейки вдоль каемки литейного оборудования, где остывание происходит быстрее всего;
  • неметаллические элементы, попавшие в сплав;
  • легирующие элементы с высоким запасом тугоплавкости.

Рост кристаллов в 90% случаев протекает вдоль температурного градиента. Наткнувшись на препятствие, структура приобретает древовидный вид. При стыке двух таких элементов, происходит образование зерен, из которых и образуется тело поликристаллического типа. Отдельные кристаллы, которые встретили препятствие на поздних стадиях своего роста, могут вырастать до 8 000 – 11 000 микрон. Их пространственное положение не имеет четкого направления, а подается вразброс. Вся совокупность мелких + крупных зерен и составляет новое образование, именуемое сплавом.

Разбор терминологии и свойств по металлической кристаллической решетке:

Металлическая кристаллическая решетка в контексте сварки

Фактически, сварочный процесс — это ручное производство сплава, цель которого соединить независимое элементы в единое целое. Задача не из простых, особенно если приходится работать с разными типами металлов, у которых слишком большой разрыв по температуре плавления.

Проблемы возникают на этапе остывания сварочного шва. Думаю, с явлением возникновение трещин знаком каждый сварщик. Основа данного явления кроется как раз в свойствах металлической решетки металла. О классификации дефектов детальнее в таблице ниже.

Дефект Описание
Точечный Изменения в структуре кристаллической решетки, которые по размерам соизмеримы с атомом. Типичными точечными дефектами является безатомные узлы, элементы вне узлов КР и замещаемые элементы неметаллов, которые становятся на место основного атома.
Линейный Основная проблематика заключается в одном измерении, когда как остальные два остаются практически неизменными. Подобные дефекты принято назвать дислокационными.
Поверхностные Здесь проблема уже состоит на 90% в двух измерениях. Третье измерение не затрагивается вовсе, либо проблематика является незначительной (менее 5 размеров атомов).
Объемные Очевидные для сварщика проблемы – поры, трещины и прочие повреждения поверхности свариваемой области.

Полностью избавиться от дефектов нереально физически даже самому опытному мастеру. Единственное, что может сделать сварщик – это придерживаться технологии + обращать внимание на свойства свариваемых металлов.

На этом сегодня все. Надеюсь, инфа по металлической кристаллической решетке вам пригодилась. Удачи и крепкого здоровья!

Кристаллическое строение металлов. Кристаллическая решетка металлов

Средняя оценка: 4.5

Всего получено оценок: 174.

Средняя оценка: 4.5

Всего получено оценок: 174.

Металлы – особая группа элементов в периодической таблице Менделеева. В отличие от неметаллов элементы этой группы являются исключительно восстановителями с положительной степенью окисления, а также обладают пластичностью, твёрдостью, упругостью, что обусловлено кристаллическим строением металлов.

Общее строение

Металлы – твёрдые вещества, имеющие кристаллическое строение. Исключение составляет ртуть – жидкий металл. Кристаллические решётки представляют собой упорядоченные определённым образом атомы металла. Каждый атом состоит из положительно заряженного ядра и нескольких отрицательно заряженных электронов. В атомах металлов недостаточно электронов, поэтому они являются ионами.

Единица кристаллической решётки – элементарная кристаллическая ячейка, в условных узлах и на гранях которой находятся положительно заряженные ионы. Их удерживают вместе металлические связи, возникающие за счёт беспорядочного движения отделившихся от атомов электронов (благодаря чему атомы превратились в ионы).

Отрицательно заряженные электроны держат на равном расстоянии положительно заряженные электроны, предавая кристаллической решётке правильную геометрическую форму.


Рис. 1. Схема металлической связи.

Свободное движение электронов обусловливает электро- и теплопроводность металлов.

Кристаллизация сплавов

Переход металла из жидкого состояния в твёрдое с образованием кристаллической структуры называется первичной кристаллизацией.

Образования новых кристаллов в твёрдом кристаллическом веществе называется вторичной кристаллизацией (перекристаллизацией).

Процесс кристаллизации состоит из двух одновременных процессов:

  • зарождение кристаллов;
  • линейный рост кристаллов;

Кристаллы могут зарождаться самопроизвольно (самопроизвольная кристаллизация) или зарождаться и расти на имеющихся готовых центрах кристаллизации (не самопроизвольная кристаллизация) (рис 33).

Рис 34 Рост зародышевых центров и рост кристаллов

Самопроизвольная кристаллизация (рис.35) обусловлена стремлением вещества иметь более устойчивое состояние, характеризуемое уменьшением термодинамического потенциала G, характеристика свободной энергии системы. Второй закон термодинамики – любая система всегда стремится занять то состояние, чтобы она обладала min свободной энергией. Температура, при которой термодинамические потенциалы вещества, как в твёрдом, так и в жидком состояниях равны, называется равновесной температурой (термодинамической температурой) ТG.

Рис.35 Самопроизвольная кристаллизация

Термодинамический потенциал определяется:

G = Е – ТS + РV (по Гельмгольцу)

где G – термодинамический потенциал, свободная энергия системы,

Е – внутренняя энергия системы,

Т – термодинамическая температура

S – энтропия (функция состояния: порядка и беспорядка, связанное с поступательным и колебательным движением),

РV – работа внешних сил (давление на объём)

G = Н – ТS (по Гиббсу)

где Н – энтальпия (Е + РV) сумма работ внутренних и внешних сил.

Разница между равновесной (ТG.) и реальной (Тр) температурой кристаллизации называется степенью переохлаждения (Δ Т).

Образованию зародышей способствуют флуктуации энергии, т.е. отклонение энергии группировок атомов в отдельных зонах жидкого металла от некоторого среднего значения.

Появление зародышей изменяет термодинамический потенциал (свободную энергию) всей системы. С одной стороны, при переходе жидкости в кристаллическое состояние термодинамический потенциал G уменьшается, с другой стороны, он увеличивается (+) вследствие появления поверхности раздела между жидкостью и кристаллическим зародышем.

На рис.36 показано, как изменяется свободная энергия системы при кристаллизации.

Кинетика кристаллизации. Скорость образования зародышей, образующихся в единицу времени в единице объёма (1мм-3с-1); скорость роста – увеличением линейных размеров, растущих кристалла в единицу времени (мм/с). Оба процесса связаны с перемещением атомов и зависят от температуры (степени переохлаждения Δ Т).

Не самопроизвольная кристаллизация (гетерогенная)

В реальных условиях процессы кристаллизации и характер образующих структур в значительной мере зависят от имеющихся готовых центров кристаллизации. Такими центрами являются:

  • тугоплавкие частицы неметаллических включений;
  • оксиды;
  • интерметаллические соединения, образуемых примесей.

Измельчение структуры способствует улучшению механических свойств металла.

Рис.36 Изменение свободной энергии при кристаллизации

На практике для измельчения структуры металла и сплавов широко применяют технологическую операцию, называемую модифицированием. Она состоит во введении в жидкий сплав перед заливкой специальных добавок модификаторов (бор в сталь, натрий в алюминий и его сплавы). Подстуживание металла перед заливкой до температур, незначительно превышающих температуру плавления металла, способствует уменьшению размера зерна.

Формирование кристаллов

Форма и размер зёрен, образующихся при кристаллизации, зависят:

  • скорости и направления отвода тепла:
  • температуры жидкого металла;
  • содержание примесей.

Структура слитка зависит от многих факторов: (рис.37)

  • количество и свойства примесей в чистом металле;
  • количества легирующих элементов в сплаве;
  • температуры разливки сплава;
  • скорость охлаждения при кристаллизации и т.д.

Рис.37 Схема строения металлического слитка, полученного при разных температурах

Типичная структура слитка сплавов состоит из трёх зон: (рис.38)

  1. мелкие равноосные кристаллы на поверхности слитка, из-за большой степени переохлаждения;
  2. столбчатые кристаллы, наиболее благоприятно ориентированные по отношению к теплоотводу, расположенные нормально к стенкам формы;
  3. равноосные кристаллы больших размеров в середине слитка, где наблюдается наименьшая степень переохлаждения и не ощущается направленного отвода тепла.

Структура, состоящая из одних столбчатых кристаллов, называется транскристаллитной. Встречается у слитков очень чистых металлов.

Химическая неоднородность по отдельным зонам слитка называется зональной ликвацией. Она отрицательно влияет на механические свойства сплава. В реальных сплавах кроме зональной встречаются и другие виды ликвации.

Виды решёток

Элементарные кристаллические ячейки могут иметь различную конфигурацию. В связи с этим выделяют три типа кристаллических решёток:

  • объемно-центрированная (ОЦК) кубическая – состоит из 9 ионов;
  • гранецентрированная (ГЦК) кубическая – включает 14 ионов;
  • гексагональная плотноупакованная (ГПУ) – состоит из 17 ионов.

ОЦК представляет собой куб, в узлах которого находится по атому. В центре куба, на пересечении диагоналей располагается девятый ион. Этот тип характерен для железа, молибдена, хрома, вольфрама, ванадия.

Элементарной кристаллической ячейкой типа ГЦК является куб с ионами в узлах и в середине каждой грани – на пересечении диагоналей. Такое строение имеют медь, серебро, алюминий, свинец, никель.

Третий тип имеет вид гексагональной призмы, в узлах которой находится по шесть ионов с каждой стороны. Посередине между шестью узлами располагается по одному иону. В середине призмы между шестиугольными гранями находится равносторонний треугольник, который составляют три иона.


Рис. 2. Типы решёток.

Металл может содержать большое количество дефектов атомного строения. Дефекты влияют на свойства металла.

Кристаллические решетки

Кристаллической решеткой называют пространственное расположение атомов или ионов в кристалле. Точки кристаллической решетки, в которых расположены атомы или ионы, называют узлами кристаллической решетки.

Кристаллические решетки подразделяют на молекулярные, атомные, ионные и металлические.

Очень важно не перепутать вид химической связи и кристаллической решетки. Помните, что кристаллические решетки отражают пространственное расположение атомов.

Молекулярная кристаллическая решетка

В узлах молекулярной решетки расположены молекулы. При обычных условиях молекулярную решетку имеют большинство газов и жидкостей. Связи чаще всего ковалентные полярные или неполярные.

Классическим примером вещества с молекулярной решеткой является вода, так что ассоциируйте свойства этих веществ с водой. Вещества с молекулярной решеткой непрочные, имеют небольшую твердость, летучие, легкоплавкие, способны к возгонке, для них характерны небольшие температуры кипения.

Примеры: NH3, H2O, Cl2, CO2, N2, Br2, H2, I2. Особо хочется отметить белый фосфор, ромбическую, пластическую и моноклинную серу, фуллерен. Эти аллотропные модификации мы подробно изучили в статье, посвященной классификации веществ.

Ионная кристаллическая решетка

В узлах ионной решетки находятся атомы, связанные ионной связью. Этот тип решетки характерен для веществ, обладающих ионной связь: соли, оксиды и гидроксиды металлов.

Ассоциируйте этот ряд веществ с поваренной солью — NaCl. Веществе с ионной решеткой имеют высокие температуры плавления и кипения, легко растворимы в воде, хрупкие, твердые, их растворы и расплавы проводят электрический ток.

Примеры: NaCl, MgCl2, NH4Br, KNO3, Li2O, Na3PO4.

Металлическая кристаллическая решетка

В узлах металлической решетки находятся атомы металла. Этот тип решетки характерен для веществ, образованных металлической связью.

Ассоциируйте свойства этих веществ с медью. Они обладают характерным металлическим блеском, ковкие и пластичные, хорошо проводят электрический ток и тепло, имеют высокие температуры плавления и кипения.

Примеры: Cu, Fe, Zn, Al, Cr, Mn.

Атомная кристаллическая решетка

В узлах атомной решетки находятся атомы, связанные ковалентной полярной или неполярной связью.

Ассоциируйте эти вещества с песком. Они очень твердые, очень тугоплавкие (высокая температура плавления), нелетучие, прочные, нерастворимы в воде.

Примеры: SiO2, B, Ge, SiC, Al2O3. Особенно хочется выделить: алмаз и графит (C), красный и черный фосфор (P).

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию

Характеристика решётки

Кристаллические решётки характеризуются компактностью или степенью наполненности. Компактность определяют показатели:

  • параметр решётки – расстояние между атомами;
  • число атомов;
  • координационное число – количество соседних ячеек;
  • плотность упаковки – отношение объёма, занимаемого атомами, к полному объёму решётки.

При подсчёте количества атомов следует помнить, что атомы в узлах и на гранях входят в состав соседних ячеек.


Рис. 3. Кристаллические ячейки составляют решётку.

Общее понятие о металлах

«Химия. 9 класс» — это учебник, по которому проходят обучение школьники. Именно в нем подробно изучаются металлы. Рассмотрению их физических и химических свойств отведена большая глава, ведь разнообразие их чрезвычайно велико.

Именно с этого возраста рекомендуют давать детям представление о данных атомах и их свойствах, ведь подростки уже вполне могут оценить значение подобных знаний. Они прекрасно видят, что окружающее их разнообразие предметов, машин и прочих вещей имеет в своей основе как раз металлическую природу.

Что же такое металл? С точки зрения химии, к данным атомам принято относить те, что имеют:

  • малое число электронов на внешнем уровне;
  • проявляют сильные восстановительные свойства;
  • имеют большой атомный радиус;
  • как простые вещества обладают рядом специфических физических свойств.

Основу знаний об этих веществах можно получить, если рассмотреть атомно-кристаллическое строение металлов. Именно оно объясняет все особенности и свойства данных соединений.

В периодической системе для металлов отводится большая часть всей таблицы, ведь они образуют все побочные подгруппы и главные с первой по третью группу. Поэтому их численное превосходство очевидно. Самыми распространенными являются:

  • кальций;
  • натрий;
  • титан;
  • железо;
  • магний;
  • алюминий;
  • калий.

Все металлы имеют ряд свойств, которые позволяют объединять их в одну большую группу веществ. В свою очередь, эти свойства объясняет именно кристаллическое строение металлов.

Кристаллическое строение металлов

Средняя оценка: 4.5

Всего получено оценок: 178.

Средняя оценка: 4.5

Всего получено оценок: 178.

Металлы – особая группа элементов в периодической таблице Менделеева. В отличие от неметаллов элементы этой группы являются исключительно восстановителями с положительной степенью окисления, а также обладают пластичностью, твёрдостью, упругостью, что обусловлено кристаллическим строением металлов.

Общее строение

Металлы – твёрдые вещества, имеющие кристаллическое строение. Исключение составляет ртуть – жидкий металл. Кристаллические решётки представляют собой упорядоченные определённым образом атомы металла. Каждый атом состоит из положительно заряженного ядра и нескольких отрицательно заряженных электронов. В атомах металлов недостаточно электронов, поэтому они являются ионами.

Единица кристаллической решётки – элементарная кристаллическая ячейка, в условных узлах и на гранях которой находятся положительно заряженные ионы. Их удерживают вместе металлические связи, возникающие за счёт беспорядочного движения отделившихся от атомов электронов (благодаря чему атомы превратились в ионы).

Рис. 1. Схема металлической связи.

Свободное движение электронов обусловливает электро- и теплопроводность металлов.

Виды решёток

Элементарные кристаллические ячейки могут иметь различную конфигурацию. В связи с этим выделяют три типа кристаллических решёток:

  • объемно-центрированная (ОЦК) кубическая – состоит из 9 ионов;
  • гранецентрированная (ГЦК) кубическая – включает 14 ионов;
  • гексагональная плотноупакованная (ГПУ) – состоит из 17 ионов.

ОЦК представляет собой куб, в узлах которого находится по атому. В центре куба, на пересечении диагоналей располагается девятый ион. Этот тип характерен для железа, молибдена, хрома, вольфрама, ванадия.

Элементарной кристаллической ячейкой типа ГЦК является куб с ионами в узлах и в середине каждой грани – на пересечении диагоналей. Такое строение имеют медь, серебро, алюминий, свинец, никель.

Третий тип имеет вид гексагональной призмы, в узлах которой находится по шесть ионов с каждой стороны. Посередине между шестью узлами располагается по одному иону. В середине призмы между шестиугольными гранями находится равносторонний треугольник, который составляют три иона.

Рис. 2. Типы решёток.

Металл может содержать большое количество дефектов атомного строения. Дефекты влияют на свойства металла.

Характеристика решётки

Кристаллические решётки характеризуются компактностью или степенью наполненности. Компактность определяют показатели:

  • параметр решётки – расстояние между атомами;
  • число атомов;
  • координационное число – количество соседних ячеек;
  • плотность упаковки – отношение объёма, занимаемого атомами, к полному объёму решётки.

При подсчёте количества атомов следует помнить, что атомы в узлах и на гранях входят в состав соседних ячеек.

Что мы узнали?

Узнали кратко об атомно-кристаллическом строении металлов. Металлы – твёрдые кристаллические вещества. Единицей решётки является элементарная кристаллическая ячейка. Благодаря металлическим связям ионы в узлах ячеек удерживаются на одинаковом расстоянии. Различают три типа кристаллических решёток – ОЦК, ГЦК и ГПУ, отличающихся количеством атомов и геометрической формой.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
gmnu-nazarovo.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: