Усадка алюминия при литье

Усадка литейных сплавов | 03.04.2012

Уменьшение линейных размеров и объема при охлаждении в результате сближения атомов металла называется усадкой. Различают объемную и линейную усадку в определенном интервале температур, выражаемую в %. Обычно объемную усадку связывают с уменьшением объемов при охлаждении и затвердевании жидкого металла, а линейную – при уменьшении линейных размеров слитков, отливок и изделий.

Рисунок 1 – Усадочные дефекты в слитке

При определении величины усадки важно правильно выбрать начальный объем жидкого металла . За время наполнения жидким металлом тела отливки часть его успевает закристаллизоваться и остыть. В результате наружная корка отливки уменьшит свои размеры и к моменту окончания отливки начальный объем жидкого металла будет меньше объема полости формы. Величина этого изменения объема зависит от линейной усадки затвердевшей корки и сил противодействующих ей. К ним относятся гидравлическое давление столба жидкого металла, термическое и механическое торможение усадки.

Линейная усадка определяется температурой начала ее проявления и коэффициентом линейного расширения. Экспериментально установлено, что линейная усадка начинается при образовании достаточно прочного скелета полузатвердевших кристаллов. Температуры, при которых это достигается, образуют на диаграмме состояния линию эффективного интервала кристаллизации. Указанный скелет полузатвердевших кристаллов образуется при 50-75 % твердой фазы в зависимости от состава стали.

Различают свободную и заторможенную усадку. Основным показателем сокращения размеров слитков и отливок в реальных условиях их затвердевания является литейная усадка, которая учитывает все виды торможения усадки. Различают термическое и механическое торможение усадки. Термическое торможение усадки вызвано различной скоростью охлаждения отдельных частей затвердевшего слоя металла. К примеру, при низком содержании углерода в стали торможение усадки достигает 25 %, снижаясь до 8 % при содержании 0,7 % углерода.

Результирующая усадка во многом определяется предусадочным расширением. К причинам предусадочного расширения относят:

  • сцепление едва затвердевшей корки с поверхностью формы и ее первоначальное расширение под действием силы сцепления;
  • скопление газов в междендритном пространстве в результате ликвации, которое может создавать давление, способствующее раздвижению кристаллов;
  • скопление неметаллических включений и газов на границе кристаллизации, увеличивающее кристаллизационное давление и способствующее увеличению периметра корки;
  • превышение сил капиллярного давления над силами сцепления между дендритами;
  • разогрев и расширение наружной корки слитка в момент образования зазора.

Учитывая предусадочное расширение при расчете полной свободной линейной усадки, удается объяснить расхождения экспериментальных данных при ее определении. С этой целью рекомендуется следующее выражение для ее расчета:

При увеличении предусадочного расширения компенсируется часть термических напряжений, что сокращает трещинообразование. Предусадочное расширение тем больше, чем шире интервал температур затвердевания. Снижение объема усадочных дефектов при этом достигается в результате выделения большого количества растворенных в стали газов в период образования значительной доли твердой фазы.
Линейная усадка взаимосвязана с интенсивностью теплообмена между формой и отливкой. С увеличением усадки образующийся зазор между отливкой и формой приводит к повышению теплового сопротивления и соответствующему снижению теплоотвода. В свою очередь уменьшение интенсивности теплообмена снижает градиент температур в затвердевшем металле, уменьшая скорость усадки и разность ее величины. При этом уменьшаются термические напряжения и связанные с ними процессы пластической деформации в затвердевшей корке.

Усадка обуславливает образование усадочных раковин, подусадочной и структурной рыхлости, различных трещин, зональной ликвации и других дефектов. Учет закономерностей, свойственных усадочным явлениям, позволяет разрабатывать соответствующие мероприятия по повышению качества отливок. Уплотнение структуры обеспечивается центробежным литьем.

Рисунок 2 – Процесс центробежного литья

Усадка при затвердевании зависит от изменения объема при переходе расплава из жидкого состояния в твердое и увеличивается с ростом интервала температур кристаллизации при охлаждении. Поэтому все элементы, расширяющие этот интервал, увеличивают усадку при затвердевании. По разным оценкам значения укладываются в интервал 0,020-0,053.

Значение коэффициента усадки играет важное практическое значение, так как определяет конкретные размеры стержневых ящиков и моделей, а также, в известной мере, величину припусков на механическую обработку и связанный с этим расход металла на изготовление отливки.

Важно отметить, что показатели линейной усадки наиболее рационально определять по замерам участков форм и отливок, расположенных горизонтально в период заливки и кристаллизации сплава. Протяженность таких участков начинает изменяться только после окончания процесса кристаллизации.

Из всего используемого при выполнении задания оборудования следует изучить прибор для измерения величины линейной усадки отливки. Конструкция прибора представлена на рисунке 1. В жесткой металлической раме 1 расположено тело песчаноглинистой формы 2 с рабочей полостью 3, включающей полости двух захватов – неподвижного 4, жестко связанного с рамой прибора, и подвижного 5. В передаточную планку 6, закрепленную на подвижном захвате, упирается ножка индикатора часового типа 7, фиксирующего перемещения захвата под действием усаживающегося образца.

Рисунок 1 – Конструкция прибора для измерения величины линейной усадки прямолинейней отливки

Усадка сплавов изменяется в зависимости от их химического состава. Так, усадка серых чугунов уменьшается с увеличением содержания кремния и углерода, а также при снижении содержания серы и марганца.

В алюминиевых сплавах увеличенное содержание кремния снижает усадку. Наличие магния и меди, наоборот, повышает усадку таких сплавов.

Увеличение содержания цинка и алюминия в магниевых сплавах снижает их усадку.

При получении отливок уменьшение их линейных размеров происходит при затрудненной усадке, которая вызвана выступающими частями формы, стержнями и т.д. Потому в ряде случаев действительная усадка меньше свободной. Такая усадка носит название литейной и выражается в %. Значение литейной усадки всегда меньше свободной. При этом разница тем больше, чем сложнее и крупнее отливка. В таблице 1 приведены значения усадки сплавов.

Таблица 1 – Примерные значения усадки сплавов

В зависимости от условий охлаждения сплава и его физических свойств объемная усадка при затвердевании может проявляться следующим образом:
а) как сосредоточенные внутренние полости (закрытые или выходящие на поверхность – открытые), расположенные в тех местах отливки, которые затвердевают в последнюю очередь (усадочные раковины);
б) только равномерным изменением внешних размеров;
в) образованием мелких полостей, которые рассеяны по толщине отливок возле отдельных зерен сплава; такие полости носят название усадочной пористости или рыхлоты.

При получении отливок из сплавов, которые имеют повышенную объемную усадку и образуют усадочные раковины (высокопрочные чугуны, стали), на массивных и верхних частях отливок предусматривают прибылиполости жидкого сплава, которые питают отливку при ее затвердевании и восполняют сокращение ее объема. Расположение и размеры прибылей должны быть выбраны так, чтобы они затвердели в последнюю очередь и именно в них локализовались усадочные раковины.

Читайте также:
Станок для резки листового металла своими руками

Рисунок 4 – Схема установки прибылей на отливках

Вся продукция имеет необходимые сертификаты соответствия,
сертификаты качества изделия и технические паспорта.

Перечень услуг представлен в соответсвующем разделе

Брак литья алюминия

Два источника брака

Источниками брака при литье алюминия являются два явления, которые могут действовать как каждый отдельно, так и совместно:

  1. Постоянное, прогрессирующее окисление алюминиевого расплава и насыщение его водородом.
  2. Уменьшение удельного объема алюминия при его переходе из жидкого в твердое состояние.

Три типа дефектов затвердевания в отливках

Рисунок 1 – Три типа дефектов затвердевания в алюминиевых отливках:
газовая пористость, усадочная пористость, горячие разрывы и трещины [1]

Окисление и насыщение водородом

В результате непрерывного окисления алюминиевого расплава и насыщения его водородом в алюминиевой отливке возникают следующие дефекты, которые являются причинами брака готовых отливок:

  • поры;
  • насыщение воздухом;
  • включения;
  • нарушение герметичности;
  • поверхностные дефекты;
  • низкая прочность;
  • низкая пластичность.

Рисунок 2 – Источники водорода в алюминиевых отливках [1]


Рисунок 3 – Выделение водорода в алюминиевых отливках [1]


Рисунок 4 – Водородная пористость [1]

Меры по предотвращению дефектов

Для предотвращения или ослабления влияния окисления и насыщения водородом принимают следующие меры:

  • обработку металла в печи и его дегазацию;
  • жесткий контроль температур плавления и литья;
  • фильтрование расплава.

При переходе алюминия из жидкого в твердое состояние растворенный в нем водород выделяется и во взаимодействии с оксидами создает проблемы с пористостью в готовых отливках.

Главной задачей при обеспечении высокого качества алюминиевого расплава является поддержание скорости окисления расплава в определенных рамках. Для этого предпринимаются следующие действия:

  • высокое качество исходных чушек;
  • современное литейное оборудование и технологии литья;
  • контроль загрузки шихты (сухая шихта, быстрое расплавление);
  • контроль температуры при плавлении и литье;
  • очистка расплава и контроль качества расплава;
  • меры безопасности при обработке и транспортировке расплава и его разливке.

Усадка

Из-за уменьшения удельного объема алюминия при его затвердевании могут возникать следующие дефекты, ведущие к браку литейной продукции:

  • раковины;
  • усадка;
  • насыщение воздухом;
  • нарушение герметичности;
  • низкая прочность и пластичность.

Для предотвращения или ослабления влияния уменьшения удельного объема алюминия при его затвердевании принимают следующие меры:

  • оптимальное размещение литниковой системы;
  • температурный контроль процесса затвердевания;
  • измельчение зерна;
  • применение модификаторов сплава.

Уменьшение удельного объема при переходе алюминиевого сплава из жидкого в твердое состояние может приводить к уменьшению объема— в зависимости от литейного сплава — до 7 %. При неблагоприятных условиях часть этой разницы в объеме может быть причиной брака литых алюминиевых изделий — усадочных полостей, пор или разрывов.


Рисунок 5.1 – Образование макропористости в алюминиевых отливках [1]


Рисунок 5.2 – Пример образования макропористости [1]

Для того, чтобы получить хорошую отливку необходимо обеспечивать возможность поступления дополнительного жидкого металла к усаживаемой микроструктуре в течение всего процесса затвердевания отливки.

При литье под давлением это обеспечивают путем повышенного давления расплава, а при гравитационном литье — за счет высоты прибыльных надставок.

Влияние типа затвердевания

Важен также тип затвердевания. В алюминиево-кремниевых сплавах — эвтектических силуминах с содержанием кремния около 13 % при затвердевании сразу образуется твердая оболочка. По другому происходит затвердевание в доэвтектических силуминах, а также в алюминиево-магниевых сплавах и сплавах с легированием медью: сначала образуется дендритная структура, а затем затвердевают остальные компоненты с более низкой температурой затвердевания.

Влияние системы литья

В гравитационном литье, к которому относится, например, литье в кокиль, подачу расплава в литниковую систему производят в самом критическом или «толстом» участке отливки. Не контролируемое или турбулентное наполнение полостей литейной формы имеет отрицательное влияние на качество отливки.


Рисунок 6 – Захват воздуха при неправильной литниковой системе [1]

Литниковая система, которая позволяет контролировать движение фронта затвердевания от дна формы до входа в литниковую системы является очень полезной для качества отливки. В хорошей системе литья заполнение формы начинается с ее нижней части и всегда так, чтобы слои нового горячего металла «ложились» на нижние, уже затвердевшие слои.

Система литья такого типа может частично компенсировать негативное влияние, которое оказывает объемное сокращение алюминия при его затвердевании и в то же время направлять расплавленный металл в форму таким образом, чтобы избежать нового его окисления из-за турбулентности течения.

Металлолом

Все о металле, его обработке и переработке

  • Металл
  • Реклама

ОСОБЕННОСТИ УСАДОЧНЫХ ПРОЦЕССОВ

1. ФИЗИЧЕСКАЯ ПРИРОДА УСАДКИ

Под усадочными процессами понимают изменения размеров залитого в форму металла. Проявляются они как в объеме отливки, так и в объеме отдельного кристалла. Усадка играет важную роль в формировании свойств отливок. С ней связано возникновение в отливках пустот — усадочных раковин и пористости, деформа­ции и напряжений [19—25, 48, 49, 169, 170], а также возникнове­ние зазора между отливкой и формой. Газовый зазор оказывает существенное влияние на условия охлаждения отливки и нагрева кокиля [6, 19—21, 56].

Если изменение температуры тела не сопровождается фазовыми превращениями, то причиной усадки является изменение среднего расстояния между атомами. При охлаждении тел это расстояние уменьшается из-за сокращения ангармонической составляющей колебания атомов около их среднего положения [49 ].

Читайте также:
Станок для заточки сверл своими руками

Фазовые превращения сопровождаются скачкообразным изме­нением размеров и объема металла. Плотность pi жидкого металла чаще всего меньше плотности рх твердого металла. Однако для сурьмы, висмута и лития наблюдается обратная картина [49, 77].

Различные фазовые превращения, происходящие в твердом металле, обычно также сопровождаются изменениями объема. Примером могут служить превращения, возникающие в чугуне при температурах кристаллизации и создающие эффект предусадочного расширения чугуна. Этот эффект связан с распадом цементита и образованием свободного графита. При температурах около 1000 К у чугуна и стали происходит распад аустенита, что также связано с объемными изменениями.

Количественной мерой усадки служат коэффициенты линейной ат или объемной р усадки (расширения). Как известно, Зат = р. Выбор одной из этих характеристик определяется соображениями удобства. В тех случаях, когда изменение объема металла локали­зуется в каких-то участках отливки, используют величину р. Ясно, что к таким случаям оносятся усадка жидкого металла и затвердевание. Усадка в твердом состоянии более или менее изо­тропна. Поэтому она оценивается линейной величиной. Коэффи­циент объемной усадки при затвердевании

Коэффициенты усадки металлов — основ важнейших литейных сплавов приведены в табл. 2.

Общая усадка сплава при литье в кокиль больше, чем при литье в песчаную форму. Объясняется это различием в скоростях затвердевания: чем быстрее затвердевает отливка, тем меньше раз­вивается в ней физическая неоднородность, влияющая на усадку [77].

Терий ATJbT1, где !АТкр — интервал температур кристал­лизации, ST1 — перепад тем­ператур по толщине стенки отливки [21 ]. Наглядное обо­значение величин, входящих в указанный критерий, пока­зано на рис. 24. Условие по­следовательного затвердевания (рис. 24, а) металла имеет вид

Механизм усадочных явлений в отливке зависит от положения сплава на диаграмме состояния и интенсивности теплообмена в системе отливка—форма. Количественной характеристикой этого механизма служит кри­

Таблица 2 Коэффициенты усадки [49]

Ясно, ¦ что данному критерию в полной мере удовлетворяют

Чистые металлы и эвтектические сплавы. Обычно ему удо­влетворяют процессы формирования отливок в кокилях.

Рис. 24. Схемы различных процессов затвердевания:

А — последовательное затвердевание; б — объемное затвердевание; э — общий случай

Условие объемного затвердевания (рис. 24, б) формулируется следующим образом:

Соответствует общему случаю затвердевания (рис. 24, в).

2. ПОСЛЕДОВАТЕЛЬНОЕ ЗАТВЕРДЕВАНИЕ

Если соблюдается условие (35), то механизм усадочных явле­ний характеризуется следующим. Сечение стенки затвердевающей отливки состоит в основном из двух зон: твердой корки и жидкого ядра. Ширина зоны, в которой металл находится в твердом и жидком состояниях, пренебрежимо мала. Изменение объема ме­талла в связи с нарастанием твердой корочки, т. е. дефицит пита­ния, компенсируется свободно текущим расплавом. При этом уса­дочная раковина локализуется в верхней (по заливке) части от­ливки. Так продолжается до тех пор, пока скорость подачи рас­плава к фронту затвердевания больше или равна скорости изме­нения дефицита питания. В противном случае формируется осе­вая пористость.

Из условия равенства скоростей подачи расплава и изменения дефицита питания получена формула для размеров зоны осевой пористости плоской отливки [49]

Д? ______ iY ЗРкр^/С2Я2 /от

Из выражения (38) следует, что при увеличении скорости затвердевания осевая пористость возрастает. В частности, при удвоении скорости затвердевания (в случае перехода от песчаной формы к металлической) размер пористой зоны возрастает в 1,6 раза. Увеличению размеров пористой зоны способствуют также рост высоты отливки и утонение ее стенки [49].

3. ОБЪЕМНОЕ ЗАТВЕРДЕВАНИЕ

Особенности процесса. При объемном затвердевании отливки [условие (36)] механизм усадочных явлений сильно отличается от рассмотренного выше. В данном случае условия питания от­ливки одинаковы во всем ее объеме. В начальной стадии про­цесса — вблизи температуры ликвидуса Тлак — движение жидкой фазы осуществляется свободно. Течение сплава с некоторым коли­чеством кристаллов носит структурный характер. При этом средняя часть потока (ядро) движется как единое целое [49]. Так продолжается до тех пор, пока относительное количество твердой фазы не достигнет некоторой величины. По данным ра­боты [21 ] кристаллы образуют неподвижный скелет, когда коли­чество выпавшей фазы примерно составляет 30—40%. По другим данным эта величина равна 25—30%.

С момента образования неподвижной сетки кристаллов пита­ние отливки определяется закономерностями фильтрации жидкой фазы. Фильтрация металла прекращается при выпадении около 80% твердой фазы. При этом ячейки с жидким металлом разоб­щаются и питание отливки в обычных условиях становится не­возможным.

Изменение объема затвердевшей отливки или ее элемента в условиях объемного процесса может быть охарактеризовано функцией одной переменной — времени. Графическое изображе­ние одной из таких функций, а именно скорости w изменения дефицита питания, приведено в виде кривой 1 на рис. 25. Вид этой кривой, зависит от конкретных условий затвердевания от­ливки, что видно из приведенных ниже расчетных формул. На кривой имеется ряд характерных точек. В точке, соответствующей абсциссе ^0, происходит схватывание кристаллов в неподвижную сетку. С момента ^0 питание отливки может осуществляться только путем фильтрации жидкой фазы через эту сетку. В момент t3o разросшиеся кристаллы разобщают находящуюся между ними жидкую фазу; фильтрация, обеспечивающая питание, прекра­щается. В момент 40 происходит полное затвердевание отливки. Для того чтобы в отливке не образовалось пустот, в нее за время At должен войти объем расплава (рис. 25, а):

Здесь AW — дефицит питания в интервале времени At. Очевидно полный дефицит объема W0 металла в отливке равен площади над кривой 1.

В интервале Af = t3o — tl0 отливка затвердевает в условиях, когда жидкая фаза находится в разобщенных ячейках. При этом питание этих ячеек отсутствует. Следовательно, площадь над кривой 1 от момента tl0 до момента U0 равна тому дефициту пи­тания IFmin, который не восполняется питанием, т. е. эта площадь соответствует неизбежному объему усадочных дефектов. Устра­нить этот объем частично или полностью можно, например, путем применения давления, способного интенсифицировать фильтра­цию жидкой фазы или разрушить ячеистую структуру твердых кристаллов.

Читайте также:
Как просверлить конусное отверстие в металле

Питающий элемент отливки (включая питатель или перешеек прибыли) должен пропустить через себя объем жидкого металла, равный W0 — IFmln. Объем этот необходим для предотвращения возникновения пустот в питаемом узле отливки (или отливки в целом). При расчетах условий, обеспечивающих восполнение дефицита питания фильтрацией, величиной IFmin можно пренеб­речь. В этом случае, очевидно, возникает некоторый технологи­ческий запас питания.

Рис. 25. Диаграмма питания отливки: I — потребный для питания отливки расход металла; 2 — возможный расход металла

Диаграмма питания отливки. Кривая 2 на рис. 25, б харак­теризует изменение объемного расхода жидкого металла через питающий элемент. Точка f3n соответствует моменту прекращения обычного течения расплава (т. е. началу процесса фильтрации), а точка /?з’п — прекращению фильтрации и образованию разоб­щенных ячеек жидкой фазы. Площадь под кривой в интервале tin — йп соответствует тому объему жидкой фазы, который мо­жет быть подан в питаемый узел.

Наложение кривых 1 и 2 позволяет получить полную картину питания отливки при условии (36). В зависимости от относитель­ного положения этих кривых отливка будет иметь тот или иной объем усадочных дефектов. График, на котором сопоставляются кривые 1 и 2, называется диаграммой питания отливки [21]. На рис. 25, в показано совмещение кривых, когда соотношение между необходимым для питания расходом жидкой фазы и рас­ходом жидкого металла через питающий элемент является не­удовлетворительным: объем усадочных дефектов соответствует заштрихованной области графика. Расположение кривых на рис. 25, г соответствует таким условиям, когда питание отливки обеспечивается в течение всего процесса затвердевания, вплоть до точки tlо – При этом объем усадочных дефектов оказывается минимальным (Wmin), а плотность — максимально возможной.

Расчетные формулы. Диаграмма питания позволяет в каждом отдельном случае определить объем усадочных дефектов в отливке и найти ее фактическую плотность. С помощью диаграммы, а также приведенных ниже формул можно рассчитать параметры техно­логии, обеспечивающие заданную плотность литого металла. Дефицит питания W как функцию времени находят по формуле

Объем затвердевшего металла V1 при литье в обычные и облицо­ванные кокили определяют по формулам гл. II. Очевидно

Таким образом, по формуле (40) рассчитывают кривую 1 на рис. 25.

Кривую 2 на рис. 25 рассчитывают на основе уравнения закона ламинарной фильтрации (Дарси):

Где К — коэффициент фильтрации; др/дх — градиент давления; Fce4— сечение потока фильтрации. Как показано в работе [21], K = ^a1-*)”«• (42)

В этом выражении Ai и п4 — коэффициенты. Для практических расчетов можно принять Ai = 6-10

8 м/с2 и п4 = 1. Интегри­рование уравнения (41) с учетом (42) дает

В момент окончания фильтрации (t = tl„) что соответствует количеству жидкой фазы, перетекающей через питающий элемент. При литье в кокиль t’3 и й находят с помощью формул гл. II. Если питающий элемент оформляется песчаной вставкой, то для вычисления этих величин можно использовать формулы работы [20].

Приведенные выше формулы позволяют количественно оценить условия подпитки отливки путем фильтрации и оценить при этом влияние таких факторов, как площадь сечения и длина канала, по которому подводится расплав к питаемому узлу, давление, вследствие которого перемещается расплав, и интенсивность тепло­обмена между отливкой и формой. Тепловая сторона процесса отражается на величинах ^n и

4. ОБЩИЙ СЛУЧАЙ ЗАТВЕРДЕВАНИЯ

Механизм усадочных процессов при условии (37) характери­зуется наибольшей сложностью. При этом условии в стенке от­ливки возникают три зоны: затвердевшая корочка толщиной ?сол,

СЛОЙ ТВерДО-ЖИДКОГО СОСТОЯНИЯ ШИРИНОЙ А?кр = ?Лик — ?сол

(двухфазная переходная зона) и жидкое ядро шириной X1 — |Лнк (см. рис. 24, в). В переходной зоне возникают фильтрационные процессы, аналогичные рассмотренным выше. Их особенность только в том, что коэффициент фильтрации зависит от простран­ственной координаты: вблизи фронта ликвидуса К достигает максимальной величины, а вблизи фронта солидуса К 0.

Для решения задачи о питании отливки в рассматриваемом случае приходится учитывать поле значений коэффициента К, что сильно усложняет расчет. В работе [21 ] приведено при­ближенное решение задачи о ширине пористой зоны в пло­ской отливке.

Идея расчета иллюстрирует­ся схемой на рис. 26. При на­личии переходной зоны после достижения в осевой части от­ливки температуры T соот­ветствующей моменту t’s схва­тывания кристаллов, поступле-

Рис. 26. Схема распределения температуры и количества твердой фазы в сечении от­ливки:

1 — кривые для момента t’ 2 — кривые для момента t”

Ние жидкой фазы из прибыли резко уменьшается. С этого момента затвердевание отливки происходит в условиях, когда жидкая фаза фильтруется из осевой зоны отливки в периферий­ную (вдоль радиуса). При этом осевая зона служит как бы прибылью для периферийной.

Начальная ширина AKp переходной зоны, соответствующая моменту t’z, определяется температурами Гц и Гц; при темпера­туре Тц прекращается фильтрация: эта температура несколько выше ГСол (рис. 26). Величину AKp находят по формуле [20]

Где п — показатель степени параболы, описывающей температур­ное поле отливки; Tc — температура окружающей среды.

Вследствие фильтрации жидкой фазы вдоль радиуса ширина пористой зоны Agnop в формулу (50) подставляют значения M к. началу образования зазора, а при расчете /2ср — к интересу­ющему нас моменту времени.

Если для определения температурного, поля кокиля исполь­зуют среднюю калориметрическую температуру системы отливка— кокиль и температурное поле аппроксимируется параболой вто­рого порядка, то при глубине прогретого слоя меньше X2 (первый этап прогрева)

Читайте также:
Как самому заточить сверло

ATnE о о: vs Fo 2 — V^Fo 2 2+Bi2 VrSF0

И при изменении температуры по всей толщине стенки кокиля (второй этап прогрева)

М = ехр 1/з°— //Bi2) * (52)

В выражениях (51) и (52): 0кО — средняя калориметрическая температура при Q0Kp = 0, отсчитанная от начальной темпера­туры кокиля как от нуля (гл. II); Bi2 ^0 = и Fo’ — критерий Фурье, соответствующий первому этапу. Для температурной кривой кокиля, описываемой параболой второго порядка, при Bi2

Усадка алюминия при литье

У с а д к а — одно из основных литейных свойств сплавов.
Процесс усадки сопровождается рядом явлений, определяющих качество отливки.
В первую очередь, к ним следует отнести образование усадочной раковины и усадочной пористости, усадочных напряжений, горячих и холодных трещин, остаточных напряжений, формирование размеров и коробления отливок.

Различают усадку металлов и сплавов и усадку отливок.
Под у с а д к о й м е т а л л о в и с п л а в о в понимают уменьшение (в общем случае изменение) объема и размеров некоторого объема металла или сплава при охлаждении в изотермических (равновесных) условиях, когда температура одинакова в любой точке в каждый данный момент времени.
Усадка сплава определяется только его физическими свойствами.

Поэтому различают: усадку в жидком состоянии, когда температура изменяется от Тзал до Tл (Tкр) (рис. 1); усадку затвердевания, когда температура изменяется от Тл до Тс (или Tкр = const, рис. 1, а, б), и усадку в твердом состоянии, когда температура изменяется от Тс до Тн (где Тн— температура окружающей среды, цеха).


Рис. 1. Схема изменения объема при охлаждении для сплавов с Ткр= const (а), Тл — Тс > 0 (б) и расширяющихся при затвердевании сплавов (в): V1, V2, V3 и V — объемы сплава при соответствующих температурных условиях.

Следует отметить, что коэффициент объемного сжатия металла в жидком состоянии больше, чем для металла в твердом состоянии.
Описанное деление связано с практической необходимостью использовать при расчете прибылей объемную усадку затвердевания, реже суммарную объемную усадку в жидком состоянии и усадку затвердевания.

В определении усадки кроме основного термина «уменьшение» в скобках используется более общий термин «изменение», что связано с возможным увеличением объема при затвердевании (рис. 1, в) таких распространенных сплавов, как серые и высокопрочные чугуны, а также таких металлов, как висмут, галлий, сурьма и литий (можно также вспомнить о расширении воды, происходящем при ее замерзании).

Чаще всего объемную усадку выражают в процентах или в долях единицы (в этом случае процентную величину необходимо разделить на 100).
Для схем, приведенных на рис. 1, объемная усадка εv сплавов определяется следующими выражениями:

где V1 — объем сплава при Тзал; V2 — объем сплава при Тл (Tкр); V3 — объем сплава при Тс (Tкр); Vo — объем сплава после полного охлаждения.

Общая (суммарная) усадка при охлаждении сплава от Тзал до Тн соответственно будет равна:

[2]
Определение объемной усадки сплавов можно осуществить с помощью пикнометра, гидростатическим, дилатометрическим и другими методами, включая метод гамма-излучения.
При этом чаще всего измеряют изменение удельного объема или плотности сплава.

Графики изменения плотности в зависимости от температуры представляют зеркальное отображение приведенных на рис. 1 графиков изменения объема.
Зависимости плотности чугунов от температуры приведены на рис. 2, которые получены профессором А. С. Басиным методом просвечивания узким пучком гамма-излучения на высокотемпературном гамма-плотномере при медленном охлаждении чугунов с постоянными скоростями (3. 5 °С/мин).

Рис. 2. Изменение плотности чугунов: а — доэвтектического состава; б — эвтектического (околоэвтектического) серого (точки L, S, S’, Е соответствуют фазовому переходу, точка M — точка минимальной плотности серого чугуна).

При охлаждении доэвтектических чугунов от температуры Тзал заливки до температуры Тл ликвидуса (точка L на рис. 2, а) их плотность р в жидком состоянии изменяется линейно.
При этом термический коэффициент объемного сжатия чугунов в жидком состоянии αv(ж ) практически не зависит ни от температуры в интервале Тзал. Ткр ни от химического состава и равен (8,5. 11) х 10 -5 К -1 .

Следовательно, объемная усадка доэвтектических чутунов и других сплавов в жидком состоянии может быть определена по уравнению:

При Тл начинается кристаллизация первичного аустенита, которая заканчивается при эвтектической температуре TE.
Изменение агрегатного состояния сопровождается увеличением плотности и уменьшением объема.
При ТЕ = const кристаллизуется эвтектика.

Белые чугуны подчиняются общей закономерности: кристаллизуется аустенито-цементитная эвтектика, плотность возрастает до значения, соответствующего точке S. При дальнейшем охлаждении плотность белого чугуна увеличивается монотонно.

В серых чугунах кристаллизуется аустенито-графитная эвтектика, что сопровождается не уменьшением, а увеличением объема и уменьшением плотности до значения, соответствующего точке S’ (рис. 2, а).
Кроме того, у серых чугунов и после точки S’ плотность уменьшается, и происходит расширение, которое заканчивается в точке М.
Плотность серого чугуна в точке М минимальна.
Интервал температуры ТS. ТM составляет 60 К.
Это расширение профессор А.С.Басин и другие назвали «постэвтектическим».

Из возможных причин постэвтектического расширения были отмечены следующие:

  • продолжение кристаллизации эвтектической жидкости с выделением графита и вытеснением остатка расплава. Это следует из рассмотрения квазибинарных разрезов диаграмм состояния многокомпонентных чугунов: под влиянием Si, Mn, S, Р и других элементов процесс эвтектической кристаллизации многокомпонентного чугуна происходит в некотором интервале температур;
  • выделение графита из первичного и эвтектического аустенита в твердом состоянии в результате резкого снижения растворимости углерода в аустените сопровождается увеличением объема (уменьшением плотности) чугуна.

При этом считают, что фактор увеличения объема твердого чугуна вследствие выделения графита из аустенита имеет большее значение.
Возможно также, что при эвтектической кристаллизации наряду с аустенито-графитной эвтектикой выделяется некоторое количество аустенито-цементитной эвтектики, цементит которой неустойчив и распадается с увеличением объема и уменьшением плотности.

Читайте также:
Температура кипения платины

Объемное изменение серого чугуна в процессах LE, ЕМ и LM можно определить (см. рис. 2) по уравнениям, аналогичным приведенным ранее:

Регрессионным анализом были получены приближенные уравнения для определения объемных изменений серого чугуна:

Особенность кристаллизации эвтектических двойных сплавов Fе — С и многокомпонентных чугунов заключается в отсутствии скачка плотности (объема) в процессе эвтектического превращения L, S, Е (рис. 2, б).
При этом усадка не наблюдается, а расширение происходит в некотором интервале температур ниже температуры эвтектического превращения, т.е. расширение является постэвтектическим.
Расширение чугунов околоэвтектического состава может достигать 1,7 %.

Температуру Тл для доэвтектических чугунов можно определить по уравнению:

где С — содержание углерода (или углеродный эквивалент).

Подставив значение Тл в уравнение [5], найдем объемную усадку затвердевания серых доэвтектических чугунов:

Образование усадочных раковин
При охлаждении расплава, залитого в реальную форму, температура в различных точках отливки будет неодинакова, поэтому описанные выше процессы объемных изменений происходят неодновременно (например, в тонких и толстых сечениях), что приводит к взаимодействию отдельных объемов и слоев отливки между собой и отливки с литейной формой.

Кроме того, часть металла может затвердевать при заливке, а уменьшение объема жидкого металла в форме некоторое время компенсируется литниковой системой.
Неодновременность затвердевания сплава в объеме отливки приводит к образованию усадочных дефектов (усадочных раковин и усадочной пористости), объем которых определяется, с одной стороны, частично объемной усадкой в жидком состоянии и объемной усадкой затвердевания сплава, а с другой — перечисленными выше процессами.

Процесс описания образования усадочных раковин начнем с простейшего примера.
Представим два металлических тела, одно из которых вписано без зазора в другое, и температура Т1 наружного тела меньше температуры Т2 внутреннего (рис. 3, а).
При охлаждении до нормальной температуры уменьшение объема внутреннего тела окажется больше, чем наружного, и между ними возникнет зазор (рис. 3, б).


Рис. 3. Образование зазора между двумя телами, имеющими разную температуру (Т1 и Т2)

Аналогично затвердевающую в форме отливку из сплава с Ткр = const, затвердевающую последовательно, можно рассматривать как систему двух тел (рис. 4, а).

Жидкое ядро 2, охлаждаясь и затвердевая, уменьшается в объеме больше по сравнению с сокращением объема затвердевшей корки 1, что связано с более значительной усадкой при затвердевании и, как правило, большим коэффициентом температурного сжатия жидкого металла по сравнению с твердым.
К концу затвердевания внутри отливки образуется воздушная пустота 3, называемая внутренней у с а д о ч н о й р а к о в и н о й (рис. 4, б).


Рис. 4. Образование скрытой усадочной раковины в отливке.

Усадочная раковина может быть и открытой, например при литье слитков.
В изложницу залит сплав с Ткр = const.
Принимаем, что при затвердевании расплава происходит усадка, при этом движение стенок формы, линейная усадка затвердевшего металла и отвод тепла в атмосферу отсутствуют.
В какой-то момент времени на стенках формы образуется твердая корка 1 (рис. 5).


Рис. 5. Образование открытой усадочной раковины: 1, 2 — твердые корки; 1′, 2′, 3′ — уровни расплава в форме.

Как следствие, начальный уровень 1′ расплава в изложнице понизится до уровня 2′, так как корка занимает меньший объем, чем объем расплава, «израсходованный» на образование этой корки.
В следующий момент образуется новая порция корки 2, и уровень 2′ расплава при этом понизится до уровня 3′ и т. д.

Данный процесс развивается во времени, приводя к образованию открытой раковины, но так как процесс остывания и затвердевания расплава во времени протекает монотонно, то в реальном слитке ступенек не образуется, поэтому на схеме они заменены прямой линией.

Литье в кокиль. Дефект отливки из алюминиевого сплава.

Вследствие расширения расплава при затвердевании (например, как у чугунов с графитом) уровень расплава в изложнице будет опускаться меньше, а в жестких формах может наблюдаться подъем уровня вплоть до выпирания расплава через стояк литниковой системы.

При движении стенок формы (из-за подутия или расширения) уровень расплава будет дополнительно опускаться, и объем усадочной раковины увеличится.

Из-за охлаждения твердая корка «усаживается» и отходит от стенок формы, но, как показывают прикидочные расчеты, объемная усадка в твердом состоянии до окончания затвердевания практически на порядок меньше, чем объемная усадка затвердевания: при литье углеродистой стали в песчано-глинистые формы указанные значения составляют соответственно 0,00045 и 0,03 (или 0,045 и 3 %).

При отводе тепла от открытой поверхности прибыли на этой поверхности образуются мосты — затвердевшие слои металла, закрывающие усадочную раковину.
На практике усадочную раковину выводят из отливки в прибыли или применяют специальные технологии: непрерывное и электрошлаковое литье, когда затвердевающая часть отливки непрерывно питается из верхней жидкой ванны.

Усадочная пористость возникает в отливках, если она изготовляется из сплава, затвердевающего в интервале температур Тл. Тс, когда в отливке можно выделить двухфазную зону и ξ л-с > 0.

В начальный момент времени до смыкания дендритов в середине толщины отливки процесс усадки происходит аналогично вышеописанному, и в результате образуется сосредоточенная усадочная раковина.
После смыкания дендритов между ними возникают замкнутые изолированные (не соединенные с основной массой расплава) пространства, заполненные жидким металлом.

По мере охлаждения и затвердевания жидкой фазы в замкнутых пространствах происходит разрыв жидкости, образование пустоты (давление в ней равно нулю, т. е. создается вакуум) и последовательное ее увеличение за счет усадки затвердевания при переходе жидкого состояния в твердое.

Читайте также:
Фигурная резка стекла своими руками

Питание отливки из стояка и прибыли при этом происходит за счет фильтрации жидкой фазы по междендритным каналам.
С течением времени каналы зарастают, и фильтрация прекращается.
При этом время фильтрации зависит от сил, действующих на жидкий металл в прибыли: сила тяжести, обычное (нормальное атмосферное) и повышенное (автоклав) давление (в порах давление равно 0), центробежные силы (при центробежном литье).

Выше описана осевая усадочная пористость, которая снижает механические свойства литых деталей и уменьшает их герметичность, особенно после обработки резанием.
Однако в кажущемся плотном металле также наблюдается усадочная пористость.
Ее принято называть рассеянной усадочной пористостью.
Она также существенно влияет на механические свойства и герметичность отливок.


Рис. 6. Зависимость объемов усадочных раковин Vу.р и пористости Vу.п от положения сплава на диаграмме состояния А — В.

Формирование усадочных раковин выше было рассмотрено только для сплавов с Т = const, т.е. по существу для чистых металлов и эвтектик.
При рассмотрении же формирования усадочной пористости было оговорено, что сплав затвердевает в интервале температур Тл. Тс.

На рис. 6, а представлена диаграмма состояния двойной системы А — В, а под ней (рис. 6, б) приведена упрощенная зависимость объемов усадочных раковин Vу.р и пористости Vу.п от интервала кристаллизации (т.е. от положения сплава на диаграмме состояния), впервые построенная А.А. Бочваром.

В чистых металлах (составы 1, 3) и эвтектиках (состав 2), когда Ткр = const, вся объемная усадка затвердевания реализуется в усадочные раковины, а пористость не имеет развития, т. е. Vу.п = 0.
По мере увеличения интервала кристаллизации Тл. Тс объем Vу.р уменьшается, а Vу.п увеличивается и достигает максимума вблизи концентрации предельной растворимости, т.е. при максимальном интервале кристаллизации.

На рис. 6 видно, что чем больше интервал, тем больше отливка поражена усадочной пористостью и меньше сосредоточенная усадочная раковина.
Отсюда следует, что отливки из сплавов с Ткр = const изготовлять легче, чем отливки с интервалом Тл. Тс, особенно широким.

В первом случае питание отливок организуется очень просто, и раковина выводится в прибыль.
Во втором случае для увеличения плотности отливки необходимы дополнительные меры.
В частности, необходимо организовать направленное затвердевание и в дополнение к этому приложить давление к жидкому металлу в прибыли.

Склонность отливок-проб к образованию усадочных раковин оценивают по уравнению:

Для более точного определения величины используют метод гидростатического взвешивания в воде.
При этом определяют массу пробы m1 с открытой усадочной раковиной и массу пробы m2 с заклеенной водонепроницаемой бумагой усадочной раковиной.

Относительный объем усадочной раковины находится из выражения:

Примером технологической пробы может служить отливка, приведенная на рис. 7, объемом 465 см 3 .

Рис. 7. Технологическая проба для определения усадочных дефектов (МФ — разъем модели и формы).

Количественной характеристикой пораженности отливок усадочной пористостью является отношение общего объема Vу.п усадочных пор к объему отливки:

Величину определяют также гидровзвешиванием.
Сначала взвешивают массу m3 пробы на воздухе и массу m1, с открытой усадочной раковиной в воде.

Определяют объем V01 отливки без раковины, но с пористостью:

Затем вырезают из данной части пробы образец, взвешивают, определяют его массу на воздухе m4 и в воде m5 и вычисляют максимально возможную (без пор) плотность сплава:

Искомую величину Vу.п находят по уравнению:

где m1/V01 — величина, равная средней плотности пробы (вместе с порами).

Усадка алюминия при литье под давлением

Усадка алюминия при литье

Брак литья алюминия

Два источника брака

Источниками брака при литье алюминия являются два явления, которые могут действовать как каждый отдельно, так и совместно:

  1. Постоянное, прогрессирующее окисление алюминиевого расплава и насыщение его водородом.
  2. Уменьшение удельного объема алюминия при его переходе из жидкого в твердое состояние.

Окисление и насыщение водородом

В результате непрерывного окисления алюминиевого расплава и насыщения его водородом в алюминиевой отливке возникают следующие дефекты, которые являются причинами брака готовых отливок:

  • поры;
  • насыщение воздухом;
  • включения;
  • нарушение герметичности;
  • поверхностные дефекты;
  • низкая прочность;
  • низкая пластичность.

Для предотвращения или ослабления влияния окисления и насыщения водородом принимают следующие меры:

  • обработку металла в печи и его дегазацию;
  • жесткий контроль температур плавления и литья;
  • фильтрование расплава.

При переходе алюминия из жидкого в твердое состояние растворенный в нем водород выделяется и во взаимодействии с оксидами создает проблемы с пористостью в готовых отливках.

Главной задачей при обеспечении высокого качества алюминиевого расплава является поддержание скорости окисления расплава в определенных рамках. Для этого предпринимаются следующие действия:

  • высокое качество исходных чушек;
  • современное литейное оборудование и технологии литья;
  • контроль загрузки шихты (сухая шихта, быстрое расплавление);
  • контроль температуры при плавлении и литье;
  • очистка расплава и контроль качества расплава;
  • меры безопасности при обработке и транспортировке расплава и его разливке.

Усадка

Из-за уменьшения удельного объема алюминия при его затвердевании могут возникать следующие дефекты, ведущие к браку литейной продукции:

  • раковины;
  • усадка;
  • насыщение воздухом;
  • нарушение герметичности;
  • низкая прочность и пластичность.

Для предотвращения или ослабления влияния уменьшения удельного объема алюминия при его затвердевании принимают следующие меры:

  • оптимальное размещение литниковой системы;
  • температурный контроль процесса затвердевания;
  • измельчение зерна;
  • применение модификаторов сплава.

Уменьшение удельного объема при переходе алюминиевого сплава из жидкого в твердое состояние может приводить к уменьшению объема— в зависимости от литейного сплава — до 7 %. При неблагоприятных условиях часть этой разницы в объеме может быть причиной брака литых алюминиевых изделий — усадочных полостей, пор или разрывов.

Для того, чтобы получить хорошую отливку необходимо обеспечивать возможность поступления дополнительного жидкого металла к усаживаемой микроструктуре в течение всего процесса затвердевания отливки.

При литье под давлением это обеспечивают путем повышенного давления расплава, а при гравитационном литье — за счет высоты прибыльных надставок.

Читайте также:
Способы защиты металлических изделий от коррозии

Влияние типа затвердевания

Важен также тип затвердевания. В алюминиево-кремниевых сплавах — эвтектических силуминах с содержанием кремния около 13 % при затвердевании сразу образуется твердая оболочка. По другому происходит затвердевание в доэвтектических силуминах, а также в алюминиево-магниевых сплавах и сплавах с легированием медью: сначала образуется дендритная структура, а затем затвердевают остальные компоненты с более низкой температурой затвердевания.

Влияние системы литья

В гравитационном литье, к которому относится, например, литье в кокиль, подачу расплава в литниковую систему производят в самом критическом или «толстом» участке отливки. Не контролируемое или турбулентное наполнение полостей литейной формы имеет отрицательное влияние на качество отливки.

Литниковая система, которая позволяет контролировать движение фронта затвердевания от дна формы до входа в литниковую системы является очень полезной для качества отливки. В хорошей системе литья заполнение формы начинается с ее нижней части и всегда так, чтобы слои нового горячего металла «ложились» на нижние, уже затвердевшие слои.

Система литья такого типа может частично компенсировать негативное влияние, которое оказывает объемное сокращение алюминия при его затвердевании и в то же время направлять расплавленный металл в форму таким образом, чтобы избежать нового его окисления из-за турбулентности течения.

Нужен совет, плавка алюминия, литьё.

Проффэсор написал :
Имею Энное количество алюминия ( корпуса от HDD) Хочу переплавить, сделать заготовки. Нужен совет.

Если полазить по сайту » > , то много интересного можно обнаружить.
Дядечка буквально из ничего, из придорожного хлама делает и печи, и горны, и станки.

Давно дело было, понадобился кусочек алюминия размером со спичечный коробок, а нигде найти не могли. Дык просто взяли провода, какие-то кусочки алюминиевых (или сплавов) деталей и в обычную консервную банку. Как раз баню топить начали, ну и банку в печь поставили. Формой послужил глинозём, набрали его в коробочку, спичечным коробком сформировали углубление. Расплавилось довольно быстро, банку зацепил плоскогубцами и потихоньку залил. Остыло, лишнее отпилили, небольшую воронку сточили и получили требуемую заготовку.

Небольшая заметка про метод SMAILа, с картинками
» >

Босые ноги,- обязательное условие!

плавлю вторичный алюминий(поршни, картера, вобщем моторку) и отливаю в песок(кварц. песок, стекло , углекислота). в отливке получаются поры.Пробовал флюс покровно рафинирующий, таблетки дегазирующие, вводил таблетки модификаторы, даже рафенировал аргоном ни чего не помагло.Также делал двойную переплавку, тоже не помогло.подскажите что делать?

Литье под давлением с предварительной вакуумизацией (дегазацией) расплава.

PS пишут » > что фильтрация помогла убрать раковины от шлака. Вообще: » >

Илья вас написал :
отливаю в песок(кварц. песок, стекло , углекислота). в отливке получаются поры.

В железный чистый кокиль лили тоже с порами?

В детстве плавили в костре в консервной банке электрический провод .Отливали в гипсовые формы кукиши -дули . Типа брелки на ключи .Где то до сих пор валяется один .

Илья вас написал :
плавлю вторичный алюминий(поршни, картера, вобщем моторку) и отливаю в песок(кварц. песок, стекло , углекислота). в отливке получаются поры.Пробовал флюс покровно рафинирующий, таблетки дегазирующие, вводил таблетки модификаторы, даже рафенировал аргоном ни чего не помагло.Также делал двойную переплавку, тоже не помогло.подскажите что делать?

Какой обьем планируете переплавлять? Если много, тогда о печке позаботьтесь. Если разово и немного (пару-тройку килограммов) то возьмите толстостенный чугунный котелок (продаются на базарах, где мангалы, жаровни и прочее для дачных дел) они как правило, продаются с крышкой, набросайте туда обломки, и поставьте в тот-же шашлычный мангал на угли, с боков тоже обвалите углями. Поддувайте в угли воздух, чтоб угли светились красным светом — это примерно 800 градусов по цельсию. Примерно через сорок минут снимите крышку — все расплавится.
ИМЕЙТЕ В ВИДУ — АЛЮМИНИЙ НЕ МЕНЯЕТ ЦВЕТ ПРИ ВЫСОКОЙ ТЕМПЕРАТУРЕ — куча народу «потрогала» пальцем чистенькое белое железо — и визжала от ожога до кости.

Перед разливкой окисную пленку с поверхности просто снимите стальной кочергой, аккуратно, не замешивая ее в расплав.

Выливайте в форму с запасом — литейная усадка у него приличная, причем разная для разных сплавов.

К сожалению, при литье в землю от пористости вы не избавитесь никак. В самом лучшем случае не будет крупных раковин, но в обьеме все равно останутся мелкие поры — до 1 мм.

В железный чистый кокиль лили тоже с порами? == Да, там всегда поры имеются. Но в кокиль гарантированно получается ровная плотная поверхность, что связано с высокой скоростью охлаждения. растворенные газы просто не успевают выделиться при затвердевании, остаются растворенными.
На машинах непрерывного литься расплав алюминия просто льется в кристаллизатор, поливается там водой, и выходит столб алюминия — нету ни пор, ни усадки. Но эти столбы далее идут на экструзию профиля — там под давлением в наряженном состоянии растворенные газы не имеют никакого значения.

Корпуса винчестеров льются под давлением, потому они такие плотные. В вашем случае вам машину для литья под давлением не достать. А если достанете — то изготовление разьемной формы будет стоить очень много денег — самому не осилить.

Не зная диаметра нужного слитка, трудно советовать. но попробуйте лить в стальную форму. Типа высверленной в чугунине глухой дырки. За счет высокой скорости охлаждения поверхность точно будет идеальной.

Усадка литейных сплавов | 03.04.2012

Уменьшение линейных размеров и объема при охлаждении в результате сближения атомов металла называется усадкой. Различают объемную и линейную усадку в определенном интервале температур, выражаемую в %. Обычно объемную усадку связывают с уменьшением объемов при охлаждении и затвердевании жидкого металла, а линейную – при уменьшении линейных размеров слитков, отливок и изделий.

Читайте также:
Самодельный глушитель на бензопилу своими руками

Рисунок 1 – Усадочные дефекты в слитке

При определении величины усадки важно правильно выбрать начальный объем жидкого металла . За время наполнения жидким металлом тела отливки часть его успевает закристаллизоваться и остыть. В результате наружная корка отливки уменьшит свои размеры и к моменту окончания отливки начальный объем жидкого металла будет меньше объема полости формы. Величина этого изменения объема зависит от линейной усадки затвердевшей корки и сил противодействующих ей. К ним относятся гидравлическое давление столба жидкого металла, термическое и механическое торможение усадки.

Линейная усадка определяется температурой начала ее проявления и коэффициентом линейного расширения. Экспериментально установлено, что линейная усадка начинается при образовании достаточно прочного скелета полузатвердевших кристаллов. Температуры, при которых это достигается, образуют на диаграмме состояния линию эффективного интервала кристаллизации. Указанный скелет полузатвердевших кристаллов образуется при 50-75 % твердой фазы в зависимости от состава стали.

Различают свободную и заторможенную усадку. Основным показателем сокращения размеров слитков и отливок в реальных условиях их затвердевания является литейная усадка, которая учитывает все виды торможения усадки. Различают термическое и механическое торможение усадки. Термическое торможение усадки вызвано различной скоростью охлаждения отдельных частей затвердевшего слоя металла. К примеру, при низком содержании углерода в стали торможение усадки достигает 25 %, снижаясь до 8 % при содержании 0,7 % углерода.

Результирующая усадка во многом определяется предусадочным расширением. К причинам предусадочного расширения относят:

  • сцепление едва затвердевшей корки с поверхностью формы и ее первоначальное расширение под действием силы сцепления;
  • скопление газов в междендритном пространстве в результате ликвации, которое может создавать давление, способствующее раздвижению кристаллов;
  • скопление неметаллических включений и газов на границе кристаллизации, увеличивающее кристаллизационное давление и способствующее увеличению периметра корки;
  • превышение сил капиллярного давления над силами сцепления между дендритами;
  • разогрев и расширение наружной корки слитка в момент образования зазора.

Учитывая предусадочное расширение при расчете полной свободной линейной усадки, удается объяснить расхождения экспериментальных данных при ее определении. С этой целью рекомендуется следующее выражение для ее расчета:

При увеличении предусадочного расширения компенсируется часть термических напряжений, что сокращает трещинообразование. Предусадочное расширение тем больше, чем шире интервал температур затвердевания. Снижение объема усадочных дефектов при этом достигается в результате выделения большого количества растворенных в стали газов в период образования значительной доли твердой фазы.
Линейная усадка взаимосвязана с интенсивностью теплообмена между формой и отливкой. С увеличением усадки образующийся зазор между отливкой и формой приводит к повышению теплового сопротивления и соответствующему снижению теплоотвода. В свою очередь уменьшение интенсивности теплообмена снижает градиент температур в затвердевшем металле, уменьшая скорость усадки и разность ее величины. При этом уменьшаются термические напряжения и связанные с ними процессы пластической деформации в затвердевшей корке.

Усадка обуславливает образование усадочных раковин, подусадочной и структурной рыхлости, различных трещин, зональной ликвации и других дефектов. Учет закономерностей, свойственных усадочным явлениям, позволяет разрабатывать соответствующие мероприятия по повышению качества отливок. Уплотнение структуры обеспечивается центробежным литьем.

Рисунок 2 – Процесс центробежного литья

Усадка при затвердевании зависит от изменения объема при переходе расплава из жидкого состояния в твердое и увеличивается с ростом интервала температур кристаллизации при охлаждении. Поэтому все элементы, расширяющие этот интервал, увеличивают усадку при затвердевании. По разным оценкам значения укладываются в интервал 0,020-0,053.

Значение коэффициента усадки играет важное практическое значение, так как определяет конкретные размеры стержневых ящиков и моделей, а также, в известной мере, величину припусков на механическую обработку и связанный с этим расход металла на изготовление отливки.

Важно отметить, что показатели линейной усадки наиболее рационально определять по замерам участков форм и отливок, расположенных горизонтально в период заливки и кристаллизации сплава. Протяженность таких участков начинает изменяться только после окончания процесса кристаллизации.

Из всего используемого при выполнении задания оборудования следует изучить прибор для измерения величины линейной усадки отливки. Конструкция прибора представлена на рисунке 1. В жесткой металлической раме 1 расположено тело песчаноглинистой формы 2 с рабочей полостью 3, включающей полости двух захватов — неподвижного 4, жестко связанного с рамой прибора, и подвижного 5. В передаточную планку 6, закрепленную на подвижном захвате, упирается ножка индикатора часового типа 7, фиксирующего перемещения захвата под действием усаживающегося образца.

Рисунок 1 — Конструкция прибора для измерения величины линейной усадки прямолинейней отливки

Усадка сплавов изменяется в зависимости от их химического состава. Так, усадка серых чугунов уменьшается с увеличением содержания кремния и углерода, а также при снижении содержания серы и марганца.

В алюминиевых сплавах увеличенное содержание кремния снижает усадку. Наличие магния и меди, наоборот, повышает усадку таких сплавов.

Увеличение содержания цинка и алюминия в магниевых сплавах снижает их усадку.

При получении отливок уменьшение их линейных размеров происходит при затрудненной усадке, которая вызвана выступающими частями формы, стержнями и т.д. Потому в ряде случаев действительная усадка меньше свободной. Такая усадка носит название литейной и выражается в %. Значение литейной усадки всегда меньше свободной. При этом разница тем больше, чем сложнее и крупнее отливка. В таблице 1 приведены значения усадки сплавов.

Таблица 1 — Примерные значения усадки сплавов

В зависимости от условий охлаждения сплава и его физических свойств объемная усадка при затвердевании может проявляться следующим образом:
а) как сосредоточенные внутренние полости (закрытые или выходящие на поверхность — открытые), расположенные в тех местах отливки, которые затвердевают в последнюю очередь (усадочные раковины);
б) только равномерным изменением внешних размеров;
в) образованием мелких полостей, которые рассеяны по толщине отливок возле отдельных зерен сплава; такие полости носят название усадочной пористости или рыхлоты.

При получении отливок из сплавов, которые имеют повышенную объемную усадку и образуют усадочные раковины (высокопрочные чугуны, стали), на массивных и верхних частях отливок предусматривают прибылиполости жидкого сплава, которые питают отливку при ее затвердевании и восполняют сокращение ее объема. Расположение и размеры прибылей должны быть выбраны так, чтобы они затвердели в последнюю очередь и именно в них локализовались усадочные раковины.

Читайте также:
Разновидности сверл по металлу

Рисунок 4 – Схема установки прибылей на отливках

Отливки из цветных сплавов. Технология литья в кокиль

Отливки из алюминиевых сплавов

Согласно ГОСТ 1583 – 73 литейные алюминиевые сплавы разделены на пять групп (I – V). Наилучшими литейными свойствами обладают сплавы группы I – силумины. Для них характерны хорошая жидкотекучесть, небольшая линейная усадка (0,9 – I %), стойкость к образованию трещин, достаточная герметичность. Силумины марок АЛ2, АЛ4, АЛ9, АК7, АК9, АК12 широко используют в производстве, однако они склонны к образованию грубой крупнозернистой эвтектики в структуре отливки и растворению газов.

Сплавы группы II (так называемые «медистые силумины») также нередко отливают в кокиль. Эти сплавы, обладающие хорошими литейными свойствами и большей прочностью, чем силумины группы I, менее склонны к образованию газовой пористости в отливках.

Сплавы групп III – V имеют более низкие литейные свойства по сравнению со сплавами групп I и II – пониженную жидкотекучесть, повышенную усадку (до 13%), склонны к образованию трещин, рыхлот и пористости в отливках. Получение отливок из сплавов III—V групп сопряжено со строгим соблюдением технологических режимов для обеспечения хорошего заполнения формы и питания отливок при затвердевании.

Все литейные алюминиевые сплавы в жидком состоянии интенсивно растворяют газы и окисляются. При их затвердевании газы выделяются из раствора и образуют газовую и газоусадочную пористость, которая снижает механические свойства и герметичность отливок. Образующаяся на поверхности расплава пленка оксидов при заполнении формы может разрушаться и попадать в тело отливки, снижая ее механические свойства и герметичность. При высоких скоростях движения расплава в литниковой системе пленка оксидов, перемешиваясь с воздухом, образует пену, которая попадает в полость формы, приводя к образованию дефектов в теле отливки.

Температуру заливки расплава в кокиль назначают в зависимости от химического состава и свойств сплава, толщины стенки отливки и ее размеров. Для силуминов типа АЛ2, AJI4, АЛ9 ее принимают о пределах 700 – 750 о С, для сплавов с широким интервалом затвердевания, в частности для сплавов типа АЛ19, обладающих пониженной жидкотекучестью, – в пределах 720 – 770 о С.

Продолжительность выдержки отливки в кокиле назначают с учетом ее размеров и массы. Обычно отливки охлаждают в форме до температуры около 400 о С.

Отливки из магниевых сплавов

Магниевые литейные сплавы по сравнению с алюминиевыми обладают худшими литейными свойствами. Они обладают пониженной жидкотекучестью, большой усадкой (3,2 – 1,5%), склонностью к образованию горячих трещин, пониженной герметичностью, высокой склонностью к окислению в жидком и твердом состояниях, способностью воспламеняться в жидком состоянии. Магниевые сплавы имеют большой интервал кристаллизации, склонны к растворению газов и поэтому в отливках часто образуются микрорыхлоты. Отливки из магниевых сплавов склонны к короблению при затвердевании и термической обработке.

Наибольшее применение для литья в кокиль нашли сплавы марок МЛ5 и МЛ6 (системы Mg – Al – Zn), сплав МЛ12 (системы Mg – Zn – Zr) и МЛ10 (системы Mg – Nd – Zr).

Температура заливки магниевых сплавов зависит от их химического состава и обычно на 100 – 150 о С превышает температуру ликвидуса, что вызвано пониженной жидкотекучестью этих сплавов. Обычно температура заливки составляет 700 – 750 о С для тонкостенных отливок и 650 – 700 о С для массивных и толстостенных отливок.

Отливки из медных сплавов

Литьем в кокиль изготовляют отливки из латуней, бронз, а также из чистой меди. Латуни обычно имеют небольшой интервал кристаллизации, хорошую жидкотекучесть, но большую усадку (1,5 – 2,5%). Латуни мало склонны к образованию усадочной пористости, но интенсивно растворяют водород. Эта особенность всех медных сплавов наиболее сильно проявляется у кремнистых латуней, отливки из которых часто поражаются газовой пористостью.

Бронзы оловянные имеют хорошую жидкотекучесть, повышенную усадку (1,4 – 1,6%), большой интервал кристаллизации, а потому и повышенную склонность к образованию усадочной пористости в отливках. Алюминиевые бронзы имеют небольшой интервал кристаллизации, большую усадку (1,7 – 2,5 %). Отливки из них получаются плотными, но эти сплавы склонны к образованию оксидных плен из-за повышенной окисляемости содержащегося в них алюминия. Плены, попадающие в тело отливки, снижают механические свойства и герметичность изделий из алюминиевых бронз. Кремнистые бронзы, аналогично кремнистым латуням, склонны к образованию газовой пористости. Свинцовые бронзы склонны к ликвации, ухудшающей свойства отливок.

Отливки из медных сплавов при литье в кокиль часто поражены трещи-нами. Это затрудняет получение в кокилях сложных тонкостенных отливок. Главный способ предупреждения этих дефектов – хорошее раскисление и ра-финирование сплавов от шлаковых включений, увеличивающих склонность сплавов к образованию трещин.

Температура заливки медных сплавов выбирается в зависимости от их химического состава и конфигурации отливки. Для отдельных сплавов температура заливки составляет, о С: оловянные бронзы – 1150 – 1200; алюминиевые бронзы – 1100 – 1150; кремнистые латуни – 1000 – 1050; свинцовые латуни – 1000 – 1100. При этом массивные отливки заливают при температурах близких к нижнему пределу, а тонкостенные – к верхнему.

Дефекты отливок из цветных сплавов и методы их предупреждения

Общими характерными дефектами отливок при литье в кокиль являются:

  1. недоливы и неслитины при низкой температуре расплава и кокиля перед заливкой, недостаточной скорости заливки, большой газотворности стержней и красок, плохой вентиляции кокиля;
  2. усадочные дефекты (раковины, утяжины, пористость, трещины) из-за недостаточного питания массивных узлов отливки, чрезмерно высокой температуры расплава и кокиля, местного перегрева кокиля, нерациональной конструкции литниковой системы;
  3. трещины вследствие несвоевременного подрыва металлического стержня или вставки, высокой температуры заливки, нетехнологичной конст-рукции отливки;
  4. шлаковые включения при использовании загрязненных шихтовых материалов, недостаточном рафинировании сплава перед заливкой, неправильной работе литниковой системы;
  5. газовая пористость при нарушении хода плавки (использовании загрязненных влагой и маслом шихт, чрезмерно высокого перегрева, недостаточного рафинирования или раскисления сплава).
Читайте также:
Как самому заточить сверло

Специфические дефекты отливок из магниевых сплавов – это дефекты усадочного происхождения (пористость, трещины, рыхлоты), обусловленные широким температурным интервалом их затвердевания. Для устранения этих дефектов требуется доводка и точное соблюдение технологических режимов – температуры расплава и кокиля, применение краски и др. Часто отливки из магниевых сплавов из-за плохой работы литниковой системы поражены шлаковыми включениями, что приводит к коррозии отливки при ее эксплуатации и хранении. Такие дефекты устраняют тщательной доводкой литниковой системы.

Специфическими дефектами отливок из медных сплавов являются: газовая пористость при плохом рафинировании и очистке сплава от шлаковых частиц, вторичные оксидные плены при литье алюминиевых бронз вследствие разделения потока расплава на струи и окисления его в форме, трещины из-за плохого раскисления сплавов при плавке.

Нужен совет, плавка алюминия, литьё.

Проффэсор написал :
Имею Энное количество алюминия ( корпуса от HDD) Хочу переплавить, сделать заготовки. Нужен совет.

Если полазить по сайту ” > , то много интересного можно обнаружить.
Дядечка буквально из ничего, из придорожного хлама делает и печи, и горны, и станки.

Давно дело было, понадобился кусочек алюминия размером со спичечный коробок, а нигде найти не могли. Дык просто взяли провода, какие-то кусочки алюминиевых (или сплавов) деталей и в обычную консервную банку. Как раз баню топить начали, ну и банку в печь поставили. Формой послужил глинозём, набрали его в коробочку, спичечным коробком сформировали углубление. Расплавилось довольно быстро, банку зацепил плоскогубцами и потихоньку залил. Остыло, лишнее отпилили, небольшую воронку сточили и получили требуемую заготовку.

Небольшая заметка про метод SMAILа, с картинками
” >

Босые ноги,- обязательное условие!

плавлю вторичный алюминий(поршни, картера, вобщем моторку) и отливаю в песок(кварц. песок, стекло , углекислота). в отливке получаются поры.Пробовал флюс покровно рафинирующий, таблетки дегазирующие, вводил таблетки модификаторы, даже рафенировал аргоном ни чего не помагло.Также делал двойную переплавку, тоже не помогло.подскажите что делать?

Литье под давлением с предварительной вакуумизацией (дегазацией) расплава.

PS пишут ” > что фильтрация помогла убрать раковины от шлака. Вообще: ” >

Илья вас написал :
отливаю в песок(кварц. песок, стекло , углекислота). в отливке получаются поры.

В железный чистый кокиль лили тоже с порами?

В детстве плавили в костре в консервной банке электрический провод .Отливали в гипсовые формы кукиши -дули . Типа брелки на ключи .Где то до сих пор валяется один .

Илья вас написал :
плавлю вторичный алюминий(поршни, картера, вобщем моторку) и отливаю в песок(кварц. песок, стекло , углекислота). в отливке получаются поры.Пробовал флюс покровно рафинирующий, таблетки дегазирующие, вводил таблетки модификаторы, даже рафенировал аргоном ни чего не помагло.Также делал двойную переплавку, тоже не помогло.подскажите что делать?

Какой обьем планируете переплавлять? Если много, тогда о печке позаботьтесь. Если разово и немного (пару-тройку килограммов) то возьмите толстостенный чугунный котелок (продаются на базарах, где мангалы, жаровни и прочее для дачных дел) они как правило, продаются с крышкой, набросайте туда обломки, и поставьте в тот-же шашлычный мангал на угли, с боков тоже обвалите углями. Поддувайте в угли воздух, чтоб угли светились красным светом – это примерно 800 градусов по цельсию. Примерно через сорок минут снимите крышку – все расплавится.
ИМЕЙТЕ В ВИДУ – АЛЮМИНИЙ НЕ МЕНЯЕТ ЦВЕТ ПРИ ВЫСОКОЙ ТЕМПЕРАТУРЕ – куча народу “потрогала” пальцем чистенькое белое железо – и визжала от ожога до кости.

Перед разливкой окисную пленку с поверхности просто снимите стальной кочергой, аккуратно, не замешивая ее в расплав.

Выливайте в форму с запасом – литейная усадка у него приличная, причем разная для разных сплавов.

К сожалению, при литье в землю от пористости вы не избавитесь никак. В самом лучшем случае не будет крупных раковин, но в обьеме все равно останутся мелкие поры – до 1 мм.

В железный чистый кокиль лили тоже с порами? == Да, там всегда поры имеются. Но в кокиль гарантированно получается ровная плотная поверхность, что связано с высокой скоростью охлаждения. растворенные газы просто не успевают выделиться при затвердевании, остаются растворенными.
На машинах непрерывного литься расплав алюминия просто льется в кристаллизатор, поливается там водой, и выходит столб алюминия – нету ни пор, ни усадки. Но эти столбы далее идут на экструзию профиля – там под давлением в наряженном состоянии растворенные газы не имеют никакого значения.

Корпуса винчестеров льются под давлением, потому они такие плотные. В вашем случае вам машину для литья под давлением не достать. А если достанете – то изготовление разьемной формы будет стоить очень много денег – самому не осилить.

Не зная диаметра нужного слитка, трудно советовать. но попробуйте лить в стальную форму. Типа высверленной в чугунине глухой дырки. За счет высокой скорости охлаждения поверхность точно будет идеальной.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
gmnu-nazarovo.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: