Теплопроводность стали при различных температурах

Коэффициент теплопроводности и теплопередачи стали, сплавов

Теплопроводность представляет собой физическую величину, которая определяет способность материалов проводить тепло. Иными словами, теплопроводность представляет собой способность субстанций передавать кинетическую энергию атомов и молекул другим субстанциям, находящиеся в непосредственном контакте с ними. В СИ эта величина измеряется во Вт/(К*м) (Ватт на Кельвин-метр), что эквивалентно Дж/(с*м*К) (Джоуль на секунду-Кельвин-метр).

Понятие теплопроводности

Она является интенсивной физической величиной, то есть величиной, которая описывает свойство материи, не зависящей от количества последней. Интенсивными величинами также являются температура, давление, электропроводность, то есть эти характеристики одинаковы в любой точке одного и того же вещества. Другой группой физических величин являются экстенсивные, которые определяются количеством вещества, например, масса, объем, энергия и другие.

Противоположной величиной для теплопроводности является теплосопротивляемость, которая отражает способность материала препятствовать переносу проходящего через него тепла. Для изотропного материала, то есть материала, свойства которого одинаковы во всех пространственных направлениях, теплопроводность является скалярной величиной и определяется, как отношение потока тепла через единичную площадь за единицу времени к градиенту температуры. Так, теплопроводность, равная одному ватту на метр-Кельвин, означает, что тепловая энергия в один Джоуль переносится через материал:

  • за одну секунду;
  • через площадь один метр квадратный;
  • на расстояние один метр;
  • когда разница температур на поверхностях, находящихся на расстоянии один метр друг от друга в материале, равна один Кельвин.

Понятно, что чем больше значение теплопроводности, тем лучше материал проводит тепло, и наоборот. Например, значение этой величины для меди равно 380 Вт/(м*К), и этот металл в 10 000 раз лучше переносит тепло, чем полиуретан, теплопроводность которого составляет 0,035 Вт/(м*К).

Перенос тепла на молекулярном уровне

Когда материя нагревается, увеличивается средняя кинетическая энергия составляющих ее частиц, то есть увеличивается уровень беспорядка, атомы и молекулы начинают более интенсивно и с большей амплитудой колебаться около своих равновесных положений в материале. Перенос тепла, который на макроскопическом уровне можно описать законом Фурье, на молекулярном уровне представляет собой обмен кинетической энергией между частицами (атомами и молекулами) вещества, без переноса последнего.

Это объяснение механизма теплопроводности на молекулярном уровне отличает его от механизма термической конвекции, при котором имеет место перенос тепла за счет переноса вещества. Все твердые тела обладают способностью к теплопроводности, в то время как тепловая конвекция возможна только в жидкостях и газах. Действительно, твердые вещества переносят тепло в основном за счет теплопроводности, а жидкости и газы, если есть температурные градиенты в них, переносят тепло в основном за счет процессов конвекции.

Теплопроводность материалов

Ярко выраженной способностью проводить тепло обладают металлы. Для полимеров свойственна невысокая теплопроводность, а некоторые из них практически не проводят тепло, например, стекловолокно, такие материалы называются теплоизоляторами. Чтобы существовал тот или иной поток тепла через пространство, необходимо наличие некоторой субстанции в этом пространстве, поэтому в открытом космосе (пустое пространство) теплопроводность равна нулю.

Каждый гомогенный (однородный) материал характеризуется коэффициентом теплопроводности (обозначается греческой буквой лямбда), то есть величиной, которая определяет, сколько тепла нужно передать через площадь 1 м², чтобы за одну секунду, пройдя через толщу материала в один метр, температура на его концах изменилась на 1 К. Это свойство присуще каждому материалу и изменяется в зависимости от его температуры, поэтому этот коэффициент измеряют, как правило, при комнатной температуре (300 К) для сравнения характеристики разных веществ.

Если материал является неоднородным, например, железобетон, тогда вводят понятие полезного коэффициента теплопроводности, который измеряется согласно коэффициентам однородных веществ, составляющих этот материал.

В таблице ниже приведены коэффициенты теплопроводности некоторых металлов и сплавов во Вт/(м*К) для температуры 300 К (27 °C):

  • сталь 47—58;
  • алюминий 237;
  • медь 372,1—385,2;
  • бронза 116—186;
  • цинк 106—140;
  • титан 21,9;
  • олово 64,0;
  • свинец 35,0;
  • железо 80,2;
  • латунь 81—116;
  • золото 308,2;
  • серебро 406,1—418,7.

В следующей таблице приведены данные для неметаллических твердых веществ:

  • стекловолокно 0,03—0,07;
  • стекло 0,6—1,0;
  • асбест 0,04;
  • дерево 0,13;
  • парафин 0,21;
  • кирпич 0,80;
  • алмаз 2300.

Из рассматриваемых данных видно, что теплопроводность металлов намного превышает таковую для неметаллов. Исключение составляет алмаз, который обладает коэффициентом теплопередачи в пять раз больше, чем медь. Это свойство алмаза связано с сильными ковалентными связями между атомами углерода, которые образуют его кристаллическую решетку. Именно благодаря этому свойству человек чувствует холод при прикосновении к алмазу губами. Свойство алмаза хорошо переносить тепловую энергию используется в микроэлектронике для отвода тепла из микросхем. А также это свойство используется в специальных приборах, позволяющих отличить настоящий алмаз от подделки.

В некоторых индустриальных процессах стараются увеличить способность передачи тепла, чего достигают либо за счет хороших проводников, либо за счет увеличения площади контакта между составляющими конструкции. Примерами таких конструкций являются теплообменники и рассеиватели тепла. В других же случаях, наоборот, стараются уменьшить теплопроводность, чего достигают за счет использования теплоизоляторов, пустот в конструкциях и снижения площади контакта элементов.

Читайте также:
Струйный насос своими руками

Коэффициенты теплопередачи сталей

Способность передавать тепло для сталей зависит от двух главных факторов: состава и температуры.

Простые углеродные стали при увеличении содержания углерода снижают свой удельный вес, в соответствии с которым также уменьшается и их способность переносить тепло от 54 до 36 Вт/(м*К) при изменении процента углерода в стали от 0,5 до 1,5%.

Нержавеющие стали содержат в своем составе хром (10% и больше), которые вместе с углеродом образует сложные карбиды, препятствующие окислению материала, а также повышает электродный потенциал металла. Теплопроводность нержавейки невелика в сравнении с другими сталями и колеблется от 15 до 30 Вт/(м*К) в зависимости от ее состава. Жаропрочные хромоникелевые стали обладают еще более низкими значениями этого коэффициента (11—19 Вт/(м*К).

Другим классом являются оцинкованные стали с удельным весом 7 850 кг/м3, которые получают путем нанесения покрытий на сталь, состоящих из железа и цинка. Так как цинк легче проводит тепло, чем железо, то и теплопроводность оцинкованной стали будет относительно высокой в сравнении с другими классами стали. Она колеблется от 47 до 58 Вт/(м*К).

Теплопроводность стали при различных температурах, как правило, не изменяется сильно. Например, коэффициент теплопроводности стали 20 при увеличении температуры от комнатной до 1200 °C снижается от 86 до 30 Вт/(м*К), а для марки стали 08Х13 увеличение температуры от 100 до 900 °C не изменяет ее коэффициент теплопроводности (27—28 Вт/(м*К).

Факторы, влияющие на физическую величину

Способность проводить тепло зависит от ряда факторов, включая температуру, структуру и электрические свойства вещества.

Температура материала

Влияние температуры на способность проводить тепло различается для металлов и неметаллов. В металлах проводимость главным образом связана со свободными электронами. Согласно закону Видемана—Франца теплопроводность металла пропорциональна произведению абсолютной температуры, выраженной в Кельвинах, на его электропроводность. В чистых металлах с увеличением температуры уменьшается электропроводность, поэтому теплопроводность остается приблизительно постоянной величиной. В случае сплавов электропроводность мало изменяется с ростом температуры, поэтому теплопроводность сплавов растет пропорционально температуре.

С другой стороны, передача тепла в неметаллах главным образом связана с колебаниями решетки и обмене решеточными фононами. За исключением кристаллов высокого качества и низких температур, путь пробега фононов в решетке значительно не уменьшается при высоких температурах, поэтому и теплопроводность остается постоянной величиной во всем температурном диапазоне, то есть является незначительной. При температурах ниже температуры Дебая способность неметаллов проводить тепло, наряду с их теплоемкостью, значительно уменьшается.

Фазовые переходы и структура

Когда материал испытывает фазовый переход первого рода, например, из твердого состояния в жидкое или из жидкого в газ, то его теплопроводность может измениться. Ярким примером такого изменения является разница этой физической величины для льда (2,18 Вт/(м*К) и воды (0,90 Вт/(м*К).

Изменения кристаллической структуры материалов также влияют на теплопроводность, что объясняется анизотропными свойствами различных аллотропных модификаций вещества одного и того же состава. Анизотропия влияет на различную интенсивность рассеивания решеточных фононов, основных переносчиков тепла в неметаллах, и в различных направлениях в кристалле. Здесь ярким примером является сапфир, проводимость которого изменяется от 32 до 35 Вт/(м*К) в зависимости от направления.

Электрическая проводимость

Теплопроводность в металлах изменяется вместе с электропроводностью согласно закону Видемана—Франца. Это связано с тем, что валентные электроны, свободно перемещаясь по кристаллической решетке металла, переносят не только электрическую, но и тепловую энергию. Для других материалов корреляция между этими типами проводимости не является ярко выраженной, ввиду незначительного вклада электронной составляющей в теплопроводность (в неметаллах основную роль в механизме передачи тепла играют решеточные фононы).

Процесс конвекции

Воздух и другие газы являются, как правило, хорошими теплоизоляторами при отсутствии процесса конвекции. На этом принципе основана работа многих теплоизолирующих материалов, содержащих большое количество небольших пустот и пор. Такая структура не позволяет конвекции распространяться на большие расстояния. Примерами таких материалов, полученных человеком, являются полистирен и силицидный аэрогель. В природе на том же принципе работают такие теплоизоляторы, как шкура животных и оперение птиц.

Легкие газы, например, водород и гель, имеют высокие значения теплопроводности, а тяжелые газы, например, аргон, ксенон и радон, являются плохими проводниками тепла. Например, аргон, инертный газ, который тяжелее воздуха, часто используется в качестве теплоизолирующего газового наполнителя в двойных окнах и в электрических лампочках. Исключением является гексафторид серы (элегаз), который является тяжелым газом и обладает относительно высокой теплопроводностью, ввиду его большой теплоемкости.

Теплопроводность металлов и сплавов — объясняем по полочкам

Теплопроводность представляет собой физическую величину, которая определяет способность материалов проводить тепло. Иными словами, теплопроводность представляет собой способность субстанций передавать кинетическую энергию атомов и молекул другим субстанциям, находящиеся в непосредственном контакте с ними. В СИ эта величина измеряется во Вт/(К*м) (Ватт на Кельвин-метр), что эквивалентно Дж/(с*м*К) (Джоуль на секунду-Кельвин-метр).

Понятие термического сопротивления и коэффициента теплопроводности

Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.

Читайте также:
Соединение медного и алюминиевого провода правила

Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.

Коэффициент теплопроводности металлов при температура, °С

От чего зависит показатель теплопроводности

Рассматривая теплопроводность металлов и сплавов (таблица создана не только для металлов, но и других материалов), следует учитывать, что наиболее важным показателем является коэффициент теплопроводности. Он зависит от нижеприведенных моментов:

  1. Типа материала и его химического состава. Теплопроводность железа будет существенно отличаться от соответствующего показателя алюминия, что связано с особенностями кристаллической решетки материалов и их другими свойствами.
  2. Коэффициент может изменяться при нагреве или охлаждения металла. При этом изменения могут быть существенными, так как у каждого материала есть своя точка плавления, когда молекулы начинают перестраиваться.

В таблицах для некоторых металлов и сплавов коэффициент теплопроводности указывается уже в жидкой фазе.

Сегодня на практике практически не проводят измерение рассматриваемого показателя. Это связано с тем, что коэффициент теплопроводности при несущественном изменении химического состава остается практически неизменным. Табличные данные применяются при проектировании и выполнении других расчетов.

Когда учитывается

При рассмотрении различных свойств материалов часто уделяется внимание и теплопроводности. Этот показатель важен в нижеприведенных случаях:

  1. Когда нужно отвести тепло от объекта. Тепловая энергия может возникать из-за трения. При этом нагрев становится причиной изменения основных свойств металлов и сплавов: прочности и твердости поверхности. Примером назовем конструкцию двигателя внутреннего сгорания. В процессе хода поршня в блоке цилиндров происходит нагрев основных элементов конструкции. Из-за слишком высокого нагрева даже металлы, устойчивые к воздействию высокой температуры, начинают терять прочность и становятся более пластичными. В результате происходит изменение геометрических размеров важных элементов конструкции, и она выходит из строя. Учитывается теплопроводность и при создании режущего инструмента, обшивки самолетов или высокоскоростных поездов.
  2. Когда нужно передать тепловую энергию. Центральная система отопления основана на нагреве рабочей среды, которая после подводится к потребителю и происходит передача энергии окружающей среде. Для того чтобы повысить эффективность создаваемой системы трубы, и отопительные радиаторы изготавливаются из металлов, которые способны быстро передавать тепло.
  3. Когда нужно изолировать поверхность. Встречается ситуация, когда нужно снизить вероятность нагрева поверхности. Для этого применяются специальные материалы, которые обладают высокими изоляционными качествами. Некоторые металлы и сплавы также обладают отражающими свойствами и не нагреваются, а также не передают тепло. Примером назовем фольгу, которая часто применяется в качестве отражающего экрана. Она также изготавливается из тонкого слоя металла, обладающего низким коэффициентом проводимости.

В заключение отметим, что до развития молекулярно-кинетической теории было принято считать передачу тепловой энергии признаком перетекания гипотетического теплорода. Появление современного оборудования позволило изучить строение материалов и изучить поведение частиц при воздействии высокой температуры. Передача энергии происходит за счет быстрого движения молекул, которые начинают сталкиваться, и приводит в движение другие молекулы, находящиеся в спокойном состоянии.

Теплопроводность материалов

Ярко выраженной способностью проводить тепло обладают металлы. Для полимеров свойственна невысокая теплопроводность, а некоторые из них практически не проводят тепло, например, стекловолокно, такие материалы называются теплоизоляторами. Чтобы существовал тот или иной поток тепла через пространство, необходимо наличие некоторой субстанции в этом пространстве, поэтому в открытом космосе (пустое пространство) теплопроводность равна нулю.

Каждый гомогенный (однородный) материал характеризуется коэффициентом теплопроводности (обозначается греческой буквой лямбда), то есть величиной, которая определяет, сколько тепла нужно передать через площадь 1 м², чтобы за одну секунду, пройдя через толщу материала в один метр, температура на его концах изменилась на 1 К. Это свойство присуще каждому материалу и изменяется в зависимости от его температуры, поэтому этот коэффициент измеряют, как правило, при комнатной температуре (300 К) для сравнения характеристики разных веществ.

Если материал является неоднородным, например, железобетон, тогда вводят понятие полезного коэффициента теплопроводности, который измеряется согласно коэффициентам однородных веществ, составляющих этот материал.

В таблице ниже приведены коэффициенты теплопроводности некоторых металлов и сплавов во Вт/(м*К) для температуры 300 К (27 °C):

  • сталь 47—58;
  • алюминий 237;
  • медь 372,1—385,2;
  • бронза 116—186;
  • цинк 106—140;
  • титан 21,9;
  • олово 64,0;
  • свинец 35,0;
  • железо 80,2;
  • латунь 81—116;
  • золото 308,2;
  • серебро 406,1—418,7.

В следующей таблице приведены данные для неметаллических твердых веществ:

  • стекловолокно 0,03—0,07;
  • стекло 0,6—1,0;
  • асбест 0,04;
  • дерево 0,13;
  • парафин 0,21;
  • кирпич 0,80;
  • алмаз 2300.

Из рассматриваемых данных видно, что теплопроводность металлов намного превышает таковую для неметаллов. Исключение составляет алмаз, который обладает коэффициентом теплопередачи в пять раз больше, чем медь. Это свойство алмаза связано с сильными ковалентными связями между атомами углерода, которые образуют его кристаллическую решетку. Именно благодаря этому свойству человек чувствует холод при прикосновении к алмазу губами. Свойство алмаза хорошо переносить тепловую энергию используется в микроэлектронике для отвода тепла из микросхем. А также это свойство используется в специальных приборах, позволяющих отличить настоящий алмаз от подделки.

Читайте также:
Фасадная плитка своими руками

В некоторых индустриальных процессах стараются увеличить способность передачи тепла, чего достигают либо за счет хороших проводников, либо за счет увеличения площади контакта между составляющими конструкции. Примерами таких конструкций являются теплообменники и рассеиватели тепла. В других же случаях, наоборот, стараются уменьшить теплопроводность, чего достигают за счет использования теплоизоляторов, пустот в конструкциях и снижения площади контакта элементов.

Методы измерения

Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.

Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями. Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину. Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.

Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.

Коэффициенты теплопередачи сталей

Способность передавать тепло для сталей зависит от двух главных факторов: состава и температуры.

Простые углеродные стали при увеличении содержания углерода снижают свой удельный вес, в соответствии с которым также уменьшается и их способность переносить тепло от 54 до 36 Вт/(м*К) при изменении процента углерода в стали от 0,5 до 1,5%.

Нержавеющие стали содержат в своем составе хром (10% и больше), которые вместе с углеродом образует сложные карбиды, препятствующие окислению материала, а также повышает электродный потенциал металла. Теплопроводность нержавейки невелика в сравнении с другими сталями и колеблется от 15 до 30 Вт/(м*К) в зависимости от ее состава. Жаропрочные хромоникелевые стали обладают еще более низкими значениями этого коэффициента (11—19 Вт/(м*К).

Другим классом являются оцинкованные стали с удельным весом 7 850 кг/м3, которые получают путем нанесения покрытий на сталь, состоящих из железа и цинка. Так как цинк легче проводит тепло, чем железо, то и теплопроводность оцинкованной стали будет относительно высокой в сравнении с другими классами стали. Она колеблется от 47 до 58 Вт/(м*К).

Теплопроводность стали при различных температурах, как правило, не изменяется сильно. Например, коэффициент теплопроводности стали 20 при увеличении температуры от комнатной до 1200 °C снижается от 86 до 30 Вт/(м*К), а для марки стали 08Х13 увеличение температуры от 100 до 900 °C не изменяет ее коэффициент теплопроводности (27—28 Вт/(м*К).

Факторы, влияющие на физическую величину

Способность проводить тепло зависит от ряда факторов, включая температуру, структуру и электрические свойства вещества.

Температура материала

Влияние температуры на способность проводить тепло различается для металлов и неметаллов. В металлах проводимость главным образом связана со свободными электронами. Согласно закону Видемана—Франца теплопроводность металла пропорциональна произведению абсолютной температуры, выраженной в Кельвинах, на его электропроводность. В чистых металлах с увеличением температуры уменьшается электропроводность, поэтому теплопроводность остается приблизительно постоянной величиной. В случае сплавов электропроводность мало изменяется с ростом температуры, поэтому теплопроводность сплавов растет пропорционально температуре.

С другой стороны, передача тепла в неметаллах главным образом связана с колебаниями решетки и обмене решеточными фононами. За исключением кристаллов высокого качества и низких температур, путь пробега фононов в решетке значительно не уменьшается при высоких температурах, поэтому и теплопроводность остается постоянной величиной во всем температурном диапазоне, то есть является незначительной. При температурах ниже температуры Дебая способность неметаллов проводить тепло, наряду с их теплоемкостью, значительно уменьшается.

Фазовые переходы и структура

Когда материал испытывает фазовый переход первого рода, например, из твердого состояния в жидкое или из жидкого в газ, то его теплопроводность может измениться. Ярким примером такого изменения является разница этой физической величины для льда (2,18 Вт/(м*К) и воды (0,90 Вт/(м*К).

Изменения кристаллической структуры материалов также влияют на теплопроводность, что объясняется анизотропными свойствами различных аллотропных модификаций вещества одного и того же состава. Анизотропия влияет на различную интенсивность рассеивания решеточных фононов, основных переносчиков тепла в неметаллах, и в различных направлениях в кристалле. Здесь ярким примером является сапфир, проводимость которого изменяется от 32 до 35 Вт/(м*К) в зависимости от направления.

Электрическая проводимость

Теплопроводность в металлах изменяется вместе с электропроводностью согласно закону Видемана—Франца. Это связано с тем, что валентные электроны, свободно перемещаясь по кристаллической решетке металла, переносят не только электрическую, но и тепловую энергию. Для других материалов корреляция между этими типами проводимости не является ярко выраженной, ввиду незначительного вклада электронной составляющей в теплопроводность (в неметаллах основную роль в механизме передачи тепла играют решеточные фононы).

Читайте также:
Температура плавления баббита

Процесс конвекции

Воздух и другие газы являются, как правило, хорошими теплоизоляторами при отсутствии процесса конвекции. На этом принципе основана работа многих теплоизолирующих материалов, содержащих большое количество небольших пустот и пор. Такая структура не позволяет конвекции распространяться на большие расстояния. Примерами таких материалов, полученных человеком, являются полистирен и силицидный аэрогель. В природе на том же принципе работают такие теплоизоляторы, как шкура животных и оперение птиц.

Легкие газы, например, водород и гель, имеют высокие значения теплопроводности, а тяжелые газы, например, аргон, ксенон и радон, являются плохими проводниками тепла. Например, аргон, инертный газ, который тяжелее воздуха, часто используется в качестве теплоизолирующего газового наполнителя в двойных окнах и в электрических лампочках. Исключением является гексафторид серы (элегаз), который является тяжелым газом и обладает относительно высокой теплопроводностью, ввиду его большой теплоемкости.


Применение

Агрегатное состояние материалов имеет отличительную структуру строения молекул и атомов. Именно это оказывает большое влияние на металлические изделия и их свойства, в зависимости от назначения.

Отличающийся химический состав узлов и деталей из железа, позволяет обладать различной теплопроводностью. Это связано со структурой таких металлов как чугун, сталь, медь и алюминий. Пористость чугунных изделий способствует медленному нагреванию, а плотность медной структуры – наоборот, ускоряет процесс теплоотдачи. Эти свойства используют для быстрого отвода тепла или постепенного нагревания продукции инертного назначения. Примером использования свойств металлических изделий является:

  • кухонная посуда с различными свойствами;
  • оборудование для пайки труб;
  • утюги;
  • подшипники качения и скольжения;
  • сантехническое оборудование для подогрева воды;
  • приборы отопления.

Медные трубки широко используют в радиаторах автомобильных систем охлаждения и кондиционеров, применяемых в быту. Чугунные батареи сохраняют тепло в квартире, даже при непостоянной подаче теплоносителя требуемой температуры. А радиаторы из алюминия, способствуют быстрой передаче тепла отапливаемому помещению.

При возникновении высокой температуры, в результате трения металлических поверхностей, также важно учитывать теплопроводность изделия. В любом редукторе или другом механическом оборудовании, способность отводить тепло, позволит деталям механизма сохранить прочность и не быть подвергнутыми разрушению, в процессе эксплуатации. Знание свойств теплопередачи различных материалов, позволит грамотно применить те или иные сплавы из цветных или черных металлов.

Все о теплопроводности стали

  1. Что это такое?
  2. От чего зависит?
  3. Показатели
  4. Значение в быту и производстве
  5. Сравнение с теплопроводностью других материалов

Теплопроводность стали имеет решающее значение для систем теплообмена, так как от этого показателя зависит, насколько качественно заработает теплообменник. Тепло, накапливающееся в одном месте, способно вывести теплоноситель или саму основу теплообменника из строя.

Что это такое?

Теплопроводность – физическая величина, основанная на законе теплового и энергетического равновесия в природе. Если в каком-то участке материал холоднее хоть на градус, перенос тепловой энергии между молекулами и атомами быстро устранит эту разницу. Способность передавать тепло между металлическими и деталями, изготовленными из сплавов, широко применяется в работе функциональных узлов и целых устройств на их основе, используемых в народнохозяйственной деятельности. В качестве примера – кипятильник, спираль в котором нагревается при прохождении через неё электрического тока, передавая тепло на его внешние слои, а затем – к нагреваемой воде.

Теплопроводность и термосопротивление противоположны друг другу. Первая отвечает за быстрый (насколько это возможно) перенос тепла, второе – наоборот, за противодействие такому переносу.

К примеру, газы обладают низкой теплопроводностью и высоким термосопротивлением, ряд жидкостей и твёрдых частиц – приблизительно похожими значениями этих двух параметров, а металлы – высокой теплопроводностью и низким термосопротивлением.

Измеряется теплопроводность в ваттах, делённых на метр, помноженный на градус. Величина теплопроводности в справочниках указывается именно в таких единицах.

От чего зависит?

Зависимость теплопроводности стали и любых иных сплавов определяется значениями ряда параметров: плотность материала, химический состав, структура (наличие пор), размеров теплопроводящего пространства, которыми оно ограничено. Для металлов эта зависимость определяется строением кристаллической решётки, например, у стали и алюминия оно разное.

Кстати, спокойная сталь обладает лучшей теплопроводностью, чем полуспокойная или кипящая: первая имеет устоявшуюся, очень плотную структуру.

Не менее важной является зависимость значения теплопроводности от температуры. Дело в том, что недостаточно проводящий материал, нагреваясь, может столкнуться с возрастающим из-за снижения теплопроводности темпом накопления тепла. Возникает так называемый лавинообразный эффект: чем больше накаляется сталь, тем больше ускоряется скорость её нагрева. Элемент, в котором не рассчитана теплоотводящая способность, при перегреве попросту обгорает, в ряде случаев – расплавляется.

Однако теплопроводность стали или любого другого сплава – либо одиночного металла – не зависит в полной мере от конкретных свойств материала. Важно и то, какие элементы, детали рядом с ним соседствуют. Если, к примеру, на поверхность процессора нанести вместо теплопроводящей пасты простой клей и «посадить» на него радиатор, то сама радиаторная пластина будет нагреваться от горячего процессора незначительно, не обеспечивая в полной мере необходимый теплоотвод.

Стоит вам программно загрузить процессор до околопредельных значений, через несколько минут он перегреется и выгорит.

Можно, конечно, радиатор посадить без теплопроводящих паст, но при слишком плотной посадке либо треснет корпус процессора, либо, наоборот, при недостаточном контакте процессорной и радиаторной поверхностей наблюдается тот же самый эффект «недоотвода» тепла, несмотря на высокую теплопроводность стали или алюминия, из которого изготовлен радиаторный модуль. Эту особенность при ремонте и замене комплектующих микроэлектроники необходимо иметь в виду.

Читайте также:
Сварка глушителя инвертором

Показатели

Для стали 09Г2С значение теплопроводности колеблется от 33 при 20 градусах до 20 при нагреве до 400 градусов.

Для стали 12Х18Н10Т теплопроводность изменяется от 15 при 20 градусах до 29 при нагреве до 800 градусов: здесь прослеживается обратная тенденция – не уменьшения, а, наоборот, увеличения (в ваттах на метр, помноженный на каждый градус изменения температуры).

Если же привести конкретные значения для разных сортов разноуглеродистых сталей, то они расположились следующим образом.

Сталь 20 при температуре 27-1200 градусов – 86-30 Вт/м*градус (тенденция к снижению).

Сталь 45 при 27-527 градусах – 79-30.

Сталь 3: при температуре 100-700 – значение в 55-30.

Ст3 (спокойная, группы В) – аналогичные предыдущему варианту значения.

Сталь 10: при 27-527 градусах – 83-44.

Сталь 40 обладает двойной зависимостью с экстремумом: при температуре 100, 800, 900, 1000, 1100 её теплопроводность снижается от 51 до 25, а при дальнейшем нагреве от 1200 до 1400 градусов она, напротив, растёт от 26 до 30 единиц.

Сталь 30 имеет лишь нисходящую, как и большинство других сортов, тенденцию: при нагреве от 20 до 700 градусов её показатель плавно снижается от 52 до 32.

У стали 15 изменение температуры от 27 до 627 вызовет снижение теплопроводности с отметки в 86 до уровня в 32 Вт/м*градус.

Остальные значения соответствуют не одной сотне всевозможных сортов сталей и чугунов, но важно главное: значительное большинство сортов сплава на основе железа демонстрирует уверенную тенденцию к снижению теплопроводности с ростом температуры. Показатель не зависит от проката стали – круглый, квадратный, угловой, тавровый, рельсовый или листовой – у всех образцов распространение нагрева происходит с одной закономерностью (скоростью).

Значение в быту и производстве

Бытовое и производственное значения теплопроводности важно учесть при изготовлении теплообменников. Как правило, все теплообменники изготавливаются из металлов и их сплавов, возможно, с добавлением легирующих неметаллических присадок. У сплавов теплопроводность несколько ниже, чем у чистых металлов. Расчёт и проектирование теплообменников базируется на способности передать тепло от теплоносителя (источника) к потребителю.

Не менее важной задачей является высокоэффективный теплоотвод. Будь это охлаждение редуктора в болгарке или микропроцессора в компьютере, теплоотводчик, не обладающий необходимым минимально допустимым значением теплопроводности, не отведёт тепло в полной мере от греющихся компонентов, отчего те быстро выйдут из строя.

Теплоизоляция, наоборот, базируется на расчёте изолирующего слоя с меньшим значением теплопроводности, а не со средним или с околомаксимальным коэффициентом.

Вспененный полиэтилен, поролон, минвата задерживают тепло зимой в помещении лишь потому, что воздух в их пористой структуре обладает, как и каждый из газов в отдельности, из которых он состоит, ничтожной – по сравнению с металлами – теплопроводностью.

Не менее важная составляющая расчёта – испытания. Разрабатывая новый теплоотводящий материал либо изолятор (например, пористый полипропилен), отталкиваются от существующих значений компонентов, из которых строится основа теплообменного слоя. Задача состоит в том, чтобы пропустить или отразить обратно большую часть тепла.

Сравнение с теплопроводностью других материалов

Для сравнения, большинство сталей обладает коэффициентом теплопроводности при нуле по Цельсию, приближённо равным 63 Вт/м*градус, при увеличении температуры нагрева до нескольких сот градусов он снижается примерно в 2,5-3 раза. Алюминий, напротив, обладает восходящей тенденцией – 202-422 единиц, большинство сплавов на его основе отличаются существенной разницей в теплопроводности.

У примесного сплава с алюминием это значение колеблется в пределах 100-180. Медь демонстрирует снижение от 394 до 353 единиц при таких же температурных изменениях.

Латунные сплавы обладают при таком же температурном диапазоне значениями в 100-200 – с нисходящей тенденцией. Никель при таком же нагреве демонстрирует снижение коэффициента с 67 до 57 единиц. Никелевые сплавы с железом и цинком обладают восходящей тенденцией: 20-50 Вт/м*градус. Хромсодержащие сплавы на основе никеля позволят достичь относительно минимального значения – 12 единиц.

Коэффициент теплопроводности для различных марок сталей и сплавов

Поиск и выбор коэффициента теплопроводности для различных марок сталей и сплавов по таблице, при указанных температурах °C. В таблице использованы справочники [1-11].

Читайте также:
Как сделать газовую горелку своими руками

Для выбора марок стали следует пользоваться системой поиска по таблице.

Коэффициент теплопроводности λ, Вт/(м·°C), при температуре, °C

Марка стали, сплава 20°C 100°C 200°C 300°C 400°C 500°C 600°C 700°C 800°C 900°C 1000°C
Ст3сп 55 54 50 45 39 34 30
08 81 69 51 45
08кп 63 60 56 51 47 41 37 34 30 27
10 57 53 45 38
10кп 58 54 49 45 40 36 32 29 27
15 56 53 45
15кп 53 53 49 46 43 39 36 32 30
20 51,7 51 49 46 42
20кп 51 49 44 43 39 36 32 26 26
25 52 51 49 46 43 40 36 32 26 27
30 51 49 42 36
35 51 49 42
40 49 49 47 44 41 38 35 29 20
45 48 47 44 41 39 36 31 27 26
50 48 48 47 44 41 38 35 31 27
55 68 55 36 32
60 67 53 36
15К 57 53 —45
20К 51 49 46 42 39 36
22К 50 48 46 44 41
А12 77 67 47
20Г 78 67 48
30Г 75 64 52 44
40Г 59 53 47 24
50Г 43 42 41 38 36 34 31 29 28
17Г1СУ 42,2

(10Х12Н22Т3МР, ЭП 33,

  1. Машиностроение. Энциклопедия. Т. II–3. Цветные металлы и сплавы. Композиционные металлические материалы. /Под общей редакцией И.Н. Фридляндера. М.: Машиностроение, 2001. 880 с.
  2. Масленков С.Б. Жаропрочные стали и сплавы. Справочник. М.: Металлургия, 1983. 192 с.
  3. Стали и сплавы. Марочник. Справ. изд. /Сорокин В.Г. и др. Науч. ред. В.Г. Сорокин, М.А. Гервасьев. М.: Интермет Инжиниринг, 2001. 608 с.
  4. Свойства конструкционных материалов атомной промышленности. Справочник в 8 т. Т. 3. Стали и сплавы для трубопроводов АЭС. /Дегтярев А.Ф., Каширский Ю.В., Козлов Вл.В. и др. Под ред. Вл.В. Козлова, С.В. Стрелкова. М.: ИЦ „Филин”, 2006. 256 с.
  5. Масленков С.Б., Масленкова Е.А. Стали и сплавы для высоких температур. Справочное издание. В 2-х книгах. Кн. 1. М.: Металлургия, 1991. 383 с.
  6. Марочник стали и сплавов для атомных энергетических установок. /Под ред. И.Р. Крянина, Г.П. Федорцова-Лутикова. М.: ЦНИИТМАШ, 1971. 195 с.
  7. Международный транслятор современных сталей и сплавов. /Под ред. В.Я. Кершенбаума. Т. 3. М.: Интак, 1993. 638 с.
  8. Журавлев В.Н., Николаева О.И. Машиностроительные стали. Справочник. 4-е изд., перераб. и доп. М.: Машиностроение, 1992. 480 с.
  9. Паршин А.М. Структура, прочность и радиационная повреждаемость коррозионностойких сталей и сплавов. Челябинск: Металлургия, Челябинское отделение, 1988. 656 с.
  10. Металловедение и термическая обработка стали и чугуна. Справочник. /Под ред. Н.Т. Гудцова, М.Л. Бернштейна, А.Г. Рахштадта. М.: Металлургиздат, 1956. 1205 с.
  11. Коррозия конструкционных материалов. Газы и неорганические кислоты: Справочное издание. В 2-х книгах. Кн. 1. Газы и фреоны. Батраков В.В., Батраков В.П., Пивоварова Л.Н., Соболев В.В. 2-е изд., перераб. и доп. М.: Интермет Инжиниринг, 2000. 344 с.

Похожие статьи

Механические свойства сталей и сплавов в зависимости от температуры отпуска

Поиск и выбор механических свойств для различных марок сталей и сплавов по таблице, в зависимости от температуры отпуска °C. В таблице использованы справочники [1]. Таблица. Механические свойства в зависимости от температуры отпуска [1] Марка стали, сплава tотп, °C σ0,2, Н/мм2 σв, […]

Газолазерная резка

Термическая резка 1. Дуговая и воздушно-дуговая резка 2. Плазменно-дуговая резка 3. Кислородная резка 4. Кислородно-флюсовая резка 5. Газолазерная резка При лазерной резке вследствие высокой концентрации энергии в световом луче возникает локальное плавление и испарение материала любого состава: сталей, стекла, пластмасс, древесины, керамики, текстиля и т. д. Параметрами режима этого вида резки являются (табл. 58) мощность […]

Механические свойства автоматных сталей по AISI-SAE и BS

B Таблице 1 и 2 приведены механические свойства автоматных ресульфированных и рефосфорированных сталей по классификации сталей Америки AISI-SAE и стандартам BS. Таблица 1. Механические свойства ресульфированных и рефосфорированных сталей по классификации AISI-SAE AISI Условия получения Предел прочности на растяжение [МПа] Предел текучести [МПа] Удлинение [%] Твердость HB Удар при испытании Изода [Дж] 1117 Прокат 490 […]

Теплопроводность сталей: общее понятие и некоторые значения

Для того чтобы проводить какую-либо работу с различными материалами, перед их обработкой обязательно нужно узнать все данные, касающиеся характеристик материала, его физические свойства.

Ниже будет рассмотрен такой материал, как сталь. Внимание будет заострено на такой способности материалов, как теплопроводность. Это показатель, который обязательно надо знать, если предполагается работа с любым материалом.

Понятие «теплопроводность»

Для начала следует разобраться в самом понятии «теплопроводность». Это поможет пользователю легче лавировать среди сухих цифр и оперировать ими. Для того чтобы провести определённую работу, следует основательно подойти к делу и разузнать все возможные характеристики того материала, с которым впоследствии будет работать пользователь.

Теплопроводностью называют такую способность различных материальных тел к теплообмену (переносу энергии) к менее нагретым частям тела от его более нагретых частей. Этот процесс возможен, благодаря различным частицам тела, которые хаотически движутся. Такими частицами являются:

  • молекулы;
  • атомы;
  • электроны и так далее.

Такой теплообмен возможен во всех телах, в которых наблюдается неоднородное распределение температурных показателей. Сам механизм переноса тепла будет напрямую зависеть от агрегатного состояния рассматриваемого материала.

Также термин «теплопроводность» применяется для обозначения количественной характеристики способности любого физического тела проводить тепло. Если сравнивать тепловые цепи с цепями электрическими, то такой термин является аналогом проводимости.

Для того чтобы охарактеризовать количественную способность физического тела проводить тепло, используется специальная величина, которая именуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, которое проходит через образец материала, обязательно однородного, единичной площади и единичной длины за единицу времени при единичной разнице температур. В известной всем системе СИ такая величина измеряется в Вт/(м*градус Цельсия).

Само явление теплопроводности зиждется на принципах, которые с лёгкостью объясняет молекулярно-кинетическая теория. Они заключаются в том, что нагретые молекулы двигаются намного быстрее, чем молекулы, пребывающие в своём обычном состоянии, поэтому при своём быстром хаотическом движении они способны влиять на другие молекулы, находящиеся в более холодных частях тела и передавать им своё тепло.

Теплопроводность стали

Для того чтобы оперировать полученными знаниями о теплопроводности материалов для последующей работы с ними, следует учитывать все существующие нюансы для отдельного физического тела.

Если говорить именно о стали, то следует помнить, что данная характеристика этого металла снижается, если содержит в себе примеси различного рода. Можно привести даже конкретные примеры, которые могут подтвердить этот общеизвестный факт. Например, если в стали увеличено содержание углерода, то это отрицательно сказывается на коэффициенте теплопроводности стали. У легированных сталей этот коэффициент ещё ниже из-за присадок.

Если рассматривать чистую сталь, не содержащую всяких примесей, то ей теплопроводность будет достаточно высока, как и у всех металлов. Составляет она около 70 Вт/(м*гр. Цельсия).

Если обратиться к показателям у углеродистых и высоколегированных сталей, то они существенно ниже, что в принципе неудивительно. Это объясняется наличием в их составе примесей, что понижает коэффициент теплопроводности. Кстати, следует помнить о том, что сам фактор термического воздействия может существенно повлиять на теплопроводность высоколегированных и углеродистых сталей. Дело в том, что при увеличении температуры, коэффициент этой величины таких сталей понижается.

Теплопроводность нескольких различных видов сталей

Тут будут представлены сухие цифры для того, чтобы пользователь мог сразу найти нужные для себя показатели коэффициента данной величины для некоторых марок сталей:

  • Коэффициент теплопроводности низкоуглеродистых сталей, которые применяются в производстве обычных труб, равен 54, 51, 47 (Вт/(м*гр. С) для 25, 125, 225 градусов по Цельсию соответственно.
  • Средний коэффициент углеродистых сталей, который можно высчитать при комнатной температуре, находится в диапазоне от 50 до 90 Вт/(М*гр. С).
  • Коэффициент теплопроводности для обычной стали, которая не содержит различных примесей, которые, в свою очередь, не могут никак повлиять на этот коэффициент, равен 64 Вт/(м*гр. С). Этот коэффициент несущественно изменяется при изменении термического воздействия, но точно не так сильно, как в случае с углеродистыми и легированными сталями.

Выводы

Для успешного процесса обработки любого материала очень важно знать все его физические свойства и характеристики. Это нужно для того, чтобы успешно проделать всю требуемую работу и получить нужный результат. Незнание характеристик может привести к неприятным последствиям.

Теплопроводность стали — очень важный момент, если предполагается работа с этим металлом. Следует помнить не только основной коэффициент теплопроводности обычной стали, но и коэффициенты этой величины у её сплавов. Они обладают другими свойствами, что может сделать работу с ними более трудной.

Мастер должен быть обладать знаниями о том, что углеродистые и легированные стали обладают гораздо меньшим коэффициентом теплопроводности, так как в их составах содержатся примеси, напрямую влияющие на эту величину.

Также следует помнить, что коэффициент данной характеристики сталей очень зависит и от термического воздействия. Это означает, что чем температура выше, тем больше и коэффициент.

Статьи

Разработка научнообоснованных принципов уп­равления металлургическими процессами с целью интенсификации производства, повышения каче­ства металла, экономии материальных и энерге­тических ресурсов требует достоверных данных о теплофизических свойствах расплавов метал­лургического производства, глубокого понимания природы жидкого состояния. Особое значение эти данные приобретают в связи с внедрением в металлургическое производство автоматизирован­ных систем управления технологическими про­цессами (АСУ ТП).

Для реализации АСУ переплавных процессов, разливки, кристаллизации металла в качестве исходной информации используются данные о тем­пературе ликвидуса и солидуса, плотности, теплоемкости, теплопроводности и вязкости жид­кого металла, изменении плотности при кристал­лизации и удельной теплоте кристаллизации. Проведенный в работе [1] расчет показал, что макроструктура слитка в модели кристаллиза­ции и ЭШП весьма чувствительна к используемым теплофизический характеристикам металлурги­ческого расплава. Так, для обеспечения точ­ности расчета пористости моделируемого слитка на уровне 10 % данные о температуре ликви­дуса и солидуса должны быть определены с точностью порядка 10 °С (

0,7%), плотности жидкого и твердого металла

8%), теплоте кристаллизации

50%). Таким образом, особые требования по точности к используемым в модели процесса кристаллизации данным выдвигаются к температуре ликвидуса и солидуса (темпе­ратурному интервалу кристаллизации) и плотно­сти металла в жидком и твердом состояниях (скачку плотности при кристаллизации).

Температуру ликвидуса TL и солидуса TS ста­ли 35 марок определяли методом проникающего гамма-излучения по изменению интенсивности проникающего через образец излучения в точках начала и конца процессов кристаллизации и плавления [2].

Для расчета температуры ликвидуса и соли­дуса стали используют два простых метода – по диаграмме состояния системы Fe-C. или в приближении аддитивного влияния содержания в стали примесей – на температуру плавления чистого железа [3, 4].

TL =Tпл – ΣαLi∙[i] (1)
TS =Tпл – ΣαSi∙[i] (2)
где aL (j) и аS(V) коэффициенты, показываю­щие на сколько градусов изменяются температуры ликвидуса и солидуса стали при добавле­нии 1 % i-ro компонента.

1 – по данным работы [3] (метод термического анализа).
2 – по данным [11] (γ-метод).

Данные о плотности жидкой и твердой стали при температуре ликвидуса и солидуса, получен­ные в работе [11] методом проникающе­го гамма-излучения, приведены в таблице. Для стали большей части марок величина dL на­ходится в интервале 6,90±0,1 г/см 3 . Исключе­ние составляет сталь P18, Р6АМ5, ЗХ2В8Ф с повышенным содержанием вольфрама и мо­либдена.

где V, – атомный объем i-ro компонента;
Xi =
Mc[i] /(Mj∙100) – мольная доля компонен­та i,
Mj
и Мc – мольная масса соответствен­но компонента i и сплава. Из уравнения (3) следует:

Плотность сплава можно рассчитать через моль­ный объем в приближении аддитивности:

Для повышения точности расчета плотности стали, содержащей >0,3 % С, мольный объем углерода следует брать равным парциальному мольному объему углерода в расплаве железа – 3,0 см 3 /моль. Приближение аддитивного объема обеспечивает точность расчета плотности жид­кой стали в пределах 1,0. 1,5 %.

Изобарные коэффициенты расширения аV для исследованных расплавов различаются между собой незначительно, их значения близки к величине ау для чистого жидкого железа (0,81∙10 -4 К -1 ) и находятся в пределах (0,90±0,15)∙10 -4 К -1 .

Изменение плотности при кристаллизации стали находится в пределах (2,9. 4,5 %). Такой до­вольно широкий интервал значений скачка плот­ности стали ряда марок связан в основном с различием структур, которые образуются при кристаллизации стали. Известно, что переход жидкое-твердое у металлов с кристаллической структурой О.Ц.К. сопровождается меньшим скачком плотности, чем металлов со структу­рой Г.Ц.К. (2,0. 3,5) % в первом случае и (4,0. 6,5) % во втором [6].

Для оценки величины скачка плотности при кристаллизации стали нужно знать структуру и соотношение между, структурными составляющи­ми. Это затрудняет расчет. В настоящее время надежные данные об изменении плотности при кристаллизации могут быть получены только экспериментально.

Такие теплофизические характеристики, как коэффициенты теплопроводности, теплоемкость и теплота кристаллизации определены лишь для стали небольшого числа марок. Коэффициенты теплопроводности, λ неизвестны или определены весьма приближенно и для многих чистых жид­ких металлов, имеющих высокую температуру плавления. Так, в справочных изданиях отсут­ствуют данные о λ, для жидких железа, ко­бальта и никеля.

В работе [11] создан способ измерения коэффициентов теплопроводности жид­ких металлов. По полученным данным [7] ве­личина λ для жидких Fe, Со и Ni при темпера­туре плавления равна соответственно 26, 36 и 68 Вт/(м>К). С некоторыми модификациями разработанный способ был применен и для измере­ния коэффициентов теплопроводности жидкой стали [2]. Коэффициенты теплопроводности при температуре плавления для стали различных ма­рок заметно различаются. Приведенные в таблице данные показывают снижение значений λ с уве­личением содержания в стали углерода.

В связи с затруднениями измерения коэф­фициентов теплопроводности жидкой стали боль­шое значение имеют расчетные методы их определения. Достаточно простым приближением, в частности, является закон Видемана – Фран­ца, связывающий теплопроводность металла с электросопротивлением:

λ = LT/z (5)
где L – функция Лоренца, в общем случае зависящая от температуры [2].

Для простых жидких металлов расчет по этому закону дает хорошие результаты при функции L, равной постоянной величине:

При высокой температуре величина L близка к L и для твердых переход­ных металлов. Для жидкого железа и, особенно, кобальта величина L близка к L, для никеля – значительно выше. Для жидкой стали можно принять величину L = 2∙10 -8 В 2 /К 2 (по данным работы [8] для железа L = 2,44∙10 -8 В 2 /К 2 ).

Электросопротивление металлических распла­вов измеряется проще, чем теплопроводность и с более высокой точностью (

5 %), поэтому для определения теплопроводности можно рекомендо­вать уравнение (5).

Значения теплоемкости жидкой стали (по дан­ным [3]) имеют довольно узкий интервал – 0,76. 0,85 Дж/(г∙К); разброс значений Cp, практи­чески не выходит за пределы эксперименталь­ной ошибки, а средняя величина Cp совпадает с теплоемкостью чистого жидкого железа, рав­ной 0,825 Дж/(г∙К).

Для расчета теплоемкости жидкой стали в работе [11] было получено следующее выра­жение (в приближении модели жестких сфер):

Рассчитанные по этому уравнению значения теплоемкости (числитель) близки к опытным дан­ным (знаменатель), Дж/(г∙К): 20ХН3А – 0,84/0,80; 08Х18Н10Т – 0,83/0,76; Р18 – 0,73/0,78; 14Г2 – 0,84/02,84; 09Г2С – 0,84/0,85; Ст 3 – 0,84/0,83; 118ХГТ – 0,84/0,82; 30ХГСА – 0,83/0,80.

Значения удельной теплоты кристаллизации q [3] также близки к величине q для чистого железа, равной 272 Дж/г. В приближении мо­дели жестких сфер в работе [11] было получено следующее уравнение, связывающее теплоту кристаллизации стали (кДж/моль) со скач­ком плотности при их кристаллизации:

Для сталей 20ХНЗА, 12Х18Н10Т и P18, для кото­рых в таблице приведены данные об относи­тельном изменении объема (плотности) и известны значения об удельной теплоте кристаллиза­ции [3], рассчитанные значения q составили соответственно 16,1; 16,3; 15,2 кДж/моль. Резуль­таты расчета согласуются с опытными дан­ными, равными соответственно 15,6; 15,9; 15,0 кДж/моль.

Экспериментальные данные, касающиеся влия­ния примесей на вязкость жидкого железа (имеется в виду изменение вязкости при вве­дении в железо первых добавок), противоречивы.

В работах [6, 9] параметры, характеризующие изменение вязкости матрицы расплава (железа) под влиянием отдельных компонентов, опреде­ляются экспериментально и используются для расчета вязкости многокомпонентных систем.

Качественно характер влияния примесей на вязкость железа можно описать в приближений модели жестких сфер.

В общем случае вязкость жидкой стали и спла­вов зависит от технологии их выплавки, исполь­зуемых шихтовых материалов и других факто­ров металлургического производства [5], которые трудно учесть в тех или иных теоретических моделях.

Заключение

Температура ликвидуса и мольный объем стали с точностью порядка 1 % могут быть определены в приближении аддитивного влияния легирую­щих элементов и примесей на температуру плавления и мольный объем чистого жидкого железа. Теоретические оценки температуры соли­дуса и плотности твердой стали при TS нена­дежны. Для оценки коэффициента теплопровод­ности расплавов на основе железа можно воспользоваться законом Видемана – Франца, вязкости теплоемкости и удельной теплоты кри­сталлизации – приближением модели жестких сфер.

Теплопроводность металлов

Все изделия, используемые человеком, способны передавать и сохранять температуру прикасаемого к ним предмета или окружающей среды. Способность отдачи тепла одного тела другому зависит от вида материала, через который проходит процесс. Свойства металлов позволяют передавать тепло от одного предмета другому, с определенными изменениями, в зависимости от структуры и размера металлической конструкции. Теплопроводность металлов – один из параметров, определяющих их эксплуатационные возможности.

Что такое теплопроводность и для чего нужна

Процесс переноса энергии атомов и молекул от горячих предметов к изделиям с холодной температурой, осуществляется при хаотическом перемещении движущихся частиц. Такой обмен тепла зависит от агрегатного состояния металла, через который проходит передача. В зависимости от химического состава материала, теплопроводность будет иметь различные характеристики. Данный процесс называют теплопроводностью, он заключается в передаче атомами и молекулами кинетической энергии, определяющей нагрев металлического изделия при взаимодействии этих частиц, или передается от более теплой части – к той, которая меньше нагрета.

Способность передавать или сохранять тепловую энергию, позволяет использовать свойства металлов для достижения необходимых технических целей в работе различных узлов и агрегатов оборудования, используемого в народном хозяйстве. Примером такого применения может быть паяльник, нагревающийся в средней части и передающий тепло на край рабочего стержня, которым выполняют пайку необходимых элементов. Зная свойства теплопроводности, металлы применяют во всех отраслях промышленности, используя необходимый параметр по назначению.

Понятие термического сопротивления и коэффициента теплопроводности

Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.

Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.

Коэффициент теплопроводности металлов при температура, °С

От чего зависит показатель теплопроводности

Изучая способность передачи тепла металлическими изделиями выявлено, что теплопроводность зависит от:

  • вида металла;
  • химического состава;
  • пористости;
  • размеров.

Металлы имеют различное строение кристаллической решетки, а это может изменить теплопроводность материала. Так, например, у стали и алюминия, особенности строения микрочастиц влияют по-разному на скорость передачи тепловой энергии через них.

Коэффициент теплопроводности может иметь различные значения для одного и того же металла при изменении температуры воздействия. Это связано с тем, что у разных металлов градус плавления отличается, а значит, при других параметрах окружающей среды, свойства материалов также будут отличаться, а это отразится на теплопроводности.

Методы измерения

Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.

Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями. Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину. Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.

Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.

Теплопроводность стали, меди, алюминия, никеля и их сплавов

Обычное железо и цветные металлы имеют разное строение молекул и атомов. Это позволяет им отличаться друг от друга не только механическими, но и свойствами теплопроводности, что, в свою очередь, влияет на применение тех или иных металлов в различных отраслях хозяйства.

Сталь имеет коэффициент теплопроводности, при температуре окружающей среды 0 град. (С), равный 63, а при увеличении градуса до 600, он снижается до 21 Вт/м*град. Алюминий, в таких же условиях, наоборот – увеличит значение от 202 до 422 Вт/м*град. Сплавы из алюминия, будут также повышать теплопроводность, по мере увеличения температуры. Только величина коэффициента будет на порядок ниже, в зависимости от количества примесей, и колебаться в пределах от 100 до 180 единиц.

Медь, при изменении температуры в тех же пределах, будет уменьшать теплопроводность от 393 до 354 Вт/м*град. При этом, медь содержащие сплавы латуни будут иметь такие же свойства, как и алюминиевые, а значение теплопроводности будет изменяться от 100 до 200 единиц, в зависимости от количества цинка и других примесей в составе сплава латуни.

Коэффициент теплопроводности чистого никеля считается низким, он будет менять свое значение от 67 до 57 Вт/м*град. Сплавы с содержанием никеля, будут также иметь коэффициент с пониженным значением, который, благодаря содержанию железа и цинка, колеблется от 20 до 50 Вт/м*град. А наличие хрома, позволит понизить теплопроводность в металлах до 12 единиц, с небольшим увеличением этой величины, при нагреве.

Применение

Агрегатное состояние материалов имеет отличительную структуру строения молекул и атомов. Именно это оказывает большое влияние на металлические изделия и их свойства, в зависимости от назначения.

Отличающийся химический состав узлов и деталей из железа, позволяет обладать различной теплопроводностью. Это связано со структурой таких металлов как чугун, сталь, медь и алюминий. Пористость чугунных изделий способствует медленному нагреванию, а плотность медной структуры – наоборот, ускоряет процесс теплоотдачи. Эти свойства используют для быстрого отвода тепла или постепенного нагревания продукции инертного назначения. Примером использования свойств металлических изделий является:

  • кухонная посуда с различными свойствами;
  • оборудование для пайки труб;
  • утюги;
  • подшипники качения и скольжения;
  • сантехническое оборудование для подогрева воды;
  • приборы отопления.

Медные трубки широко используют в радиаторах автомобильных систем охлаждения и кондиционеров, применяемых в быту. Чугунные батареи сохраняют тепло в квартире, даже при непостоянной подаче теплоносителя требуемой температуры. А радиаторы из алюминия, способствуют быстрой передаче тепла отапливаемому помещению.

При возникновении высокой температуры, в результате трения металлических поверхностей, также важно учитывать теплопроводность изделия. В любом редукторе или другом механическом оборудовании, способность отводить тепло, позволит деталям механизма сохранить прочность и не быть подвергнутыми разрушению, в процессе эксплуатации. Знание свойств теплопередачи различных материалов, позволит грамотно применить те или иные сплавы из цветных или черных металлов.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
gmnu-nazarovo.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: