Сварка титана полуавтоматом

Технология сварки титана аргоном в домашних условиях

Титан обладает набором уникальных свойств, благодаря чему используется как в промышленном производстве, так и в медицинских целях. Из него изготавливают легкие детали летательных аппаратов, протезы, не отторгаемые организмом человека. Однако, сварка титана – процесс не из легких. Для упрощения его используются особые приспособления и технологии.

Специфические свойства металла

Титан обладает такими особенностями:

  • самовозгорается в среде кислорода;
  • обладает низкой теплопроводностью;
  • активно вступает в реакции при нагревании до 400°С;
  • поглощает водород, азотируется;
  • быстро окисляется.

Сплавы

Соединения на основе титана плавятся при температуре 1468-1830°С. Элементы отличаются повышенной коррозионной и жаростойкостью. Сплавы легко поддаются закалке при введении снижающих пластичность добавок – ванадия, хрома, марганца.

При нагревании до 400°С металл активно вступает в реакции с азотом и кислородом, находящимися в воздухе. При нагревании до 800°С зернистость и пористость металла возрастает. Потому сваривание деталей из титана должна осуществляться при исключении воздействия окисляющих газов.

Подготовка образцов (кромок)

Перед тем как сварить титан и его сплавы удаляется окисленная пленка – элементы обезжириваются и зачищаются.

Поверхности вдоль кромок обрабатываются на протяжении 10 минут раствором из соляной кислоты (35%), воды (65%) с добавлением 50 г натрия фторида. Смесь нагревается до 70°С.

Затем кромки шлифуются наждачкой или щетками – удаляются трещины и заусенцы.

Какие методы применяют?

Ручной дуговой

Ручная сварка изделий из титана аргоном используется преимущественно в небольшом производстве или при особо сложных работах при невозможности применения автомата.

При сварке электрод ведется прямо, с наклоном в переднюю сторону по направлению шва. Если необходимо применение присадочной проволоки, то она должна поступать постоянно, стержень при этом ставится перпендикулярно к свариваемым элементам.

[stextbox окончании аргонодуговой сварки защитная среда подается еще на протяжении 2 минут – за это время должен успеть охладиться заключительный участок шва.[/stextbox]

Автоматический

Выполняется на постоянном токе с помощью вольфрамовых электродов при прямой полярности. Горелка подбирается с диаметром сопла 12-15 мм.

Дуга возбуждается и гасится не на элементах, а на начальных планках, так как в ином случае возможно проплавление соединяемых изделий.

Электрошлаковый

Способ используется редко, в основном для нержавеющих деталей с добавлением к титану олова или алюминия. Подразумевается применение пластинчатых электродов размером 12х60 мм. С их помощью получается высокопрочный шов. Ток сварки достигает 1,5 кА.

Сварка прессованных изделий выполняется круглыми стержнями сечением 8 мм.

Контактный

Для такого метода титановые электроды требуются только для подвода дуги к рабочей области. Розжиг ее выполняется между соединяемыми зонами изделий, сближающихся при давлении сварочных стержней.

Способ используется для сопряжения тонких листовых изделий.

Под флюсом

Шовная линия покрывается флюсовым порошком. Защищающие газы выделяются в процессе плавления порошка под электродугой, закрывая околошовную область и сварную ванну.

Способ позволяет сваривать элементы толщиной до 5 мм при соединении в угол, при сопряжении внахлест – толщиной до 3 мм. Сварка выполняется очень быстро – со скорость до 50 м/ч.

Холодный

Холодная сварка используется в твердой фазе на обычном воздухе под высоким давлением. Сопряжение осуществляется внахлест. Изделия зажимаются специальными зажимами, после удаления которых происходит деформация титана. Таким образом детали соединяются.

Шовный роликовый

Применяются стержни в форме роликов, катящихся вдоль будущего шва и сжимающие соединяемые элементы. На линию подается мощные токовые импульсы. Проплавленные зоны перекрывают друг друга на 15%, образуя герметичный рубец.

Режимы конденсаторной стыковой сварки титановых труб

Конденсаторный способ сварки титановых труб подразумевает периодическую подачу мощных импульсов, а не постоянную. Защитные газы при этом не требуются. Соединяются трубы сечением до 23 мм с толщиной стенки не выше 1,5 мм.

Ручной процесс

Электроды

При ручной сварке используются вольфрамовые стержни, заточенные под углом 35-40°. При интенсивном применении стержень требуется периодически подтачивать.

[stextbox на больший угол сточен электрод, тем больше глубина проплавки.[/stextbox]

Проволока

Проволока используется только из соответствующего сплава титана. Предварительно она прокалятся под вакуумом для удаления водорода и обязательно защищается от окисления. Такая проволока должна храниться в закрытой тубе не более 5 суток.

Для сварки изделий толщиной до 1,5 мм встык применение присадки необязательно.

Горелка

Горелка применятся со специальными приспособлениями, уберегающими титан от азотирования и окисления. По ГОСТ область соединения должна защищаться от воздействия атмосферного воздуха.

Особенности технологии

Должны обеспечиваться беспрерывное поступление присадки и постоянная скорость перемещения электрода, точность движений.

[stextbox расхода аргона – 5-8 л/мин, на изнаночной стороне рубца – 2 л/мин.[/stextbox]

При соединении труб необходима герметизация их концов, инертный газ поступает от насоса.

Перед тем как сварить титан в домашних условиях, следует знать, что трубы невозможно соединить качественно, за исключением применения конденсаторной сварки. Их можно сопрягать и без инертного газа, параметр зарядного напряжения должен составлять 850-2100 В.

Сварка титана и его сплавов со стальными заготовками – особенности процесса

Сваривание стали с титаном позволяет снизить массу получаемых изделий. Но высокопрочных соединений добиться с помощью полуавтомата невозможно. Проблемы также могут возникнуть и при сопряжении титана с нержавейкой полуавтоматической сваркой.

Применяются следующие методы:

  • сваривание взрывом;
  • диффузионный способ;
  • клинопрессовое сваривание труб;
  • ультразвуковой;
  • контактный.

Контроль качества

Контроль качества можно выполнить визуально. Шов должен быть серебристого цвета и без трещин. Желтоваты рубец свидетельствует о среднем качестве, но приемлемом.

Читайте также:
Как развести зубья у ножовки по дереву

Любые иные оттенки говорят о нарушении технологии и содержании в материале рубца посторонних примесей. Такие соединения не обладают достаточной прочностью.

Возможные дефекты

Самым распространенным дефектом является пористость рубца, появляющаяся при поглощении расплавленным металлом воздушных пузырьков.

Чтобы минимизировать пористость следует:

  • тщательно подготовить поверхности – зачистить их и обезжирить;
  • обеспечить требуемый уровень защиты сварной зоны и ванны.

[stextbox Иванов, сварщик, стаж работы – 15 лет: «Несмотря на сложность процесса, сварка титана достаточно распространена. Выполнить ее в домашних условиях сложно, но возможно. Для этого следует неукоснительно соблюдать технологию и тщательно подбирать присадочные материалы».[/stextbox]

Полуавтоматическая сварка титана и его сплавов

Механизированная дуговая сварка плавящимся электродом (MIG) титана и его сплавов выполняется стандартным оборудованием с дополнительной комплектацией устройствами для газовой защиты зоны сварки.

Марка металла Свариваемость Технологические особенности сварки
ВТ1-00, ВТ1-0, ОТ4-0, ОТ4-1 Хорошая Тщательная зачистка кромок деталей.
Выбор режимов с минимальной погонной энергией. Электродная проволока ВТ1-00св, ВТ2, ВТ2В, ВТ20-1св, ВТ20-2св
ОТ4, ВТ5, ВТ5-1 Удовлетворительная
ВТ6, ВТ3-1, ВТ9, ВТ14, ВТ16, ВТ20 Ограниченная Сварка на мягких режимах с высокой скоростью охлаждения. Электродная проволока ВТ15, СПТ-2, СП-15
ВТ22 Сварка с последующей термообработкой. Электродная проволока ВТ6св, ВТ20-1св, ВТ20-2св, СПТ-2
ПТ-7М, ПТ-3В, ПТ-1M Хорошая Режимы с высокой скоростью охлаждения. Электродная проволока ВТ1-00св, СПТ-2, СП-15

Трудности полуавтоматической сварке титана

Подготовка к полуавтоматической сварке

Раскрой на заготовки и подготовка кромок чаще всего проводятся механическими способами. Если изделия являются толстостенными, можно провести разделительную резку и подготовку кромок газотермическими методами, но затем надо обязательно обработать кромки механически на глубину как минимум 3-5 мм.
Для зачистки кромок на ширину 15-20 мм используются металлические щетки, шаберы и прочие приспособления. Обязательным является последующее обезжиривание кромок.
Если перед сваркой проводилась вальцовка, ковка, штамповка или другие виды термообработки, необходимо очистить поверхности гидропескоструйным или дробеструйным аппаратом (подробнее см. Очистка поверхности металла перед сваркой).

После этого они подвергаются химической обработке:

  • рыхлению оксидной пленки;
  • травлению;
  • осветлению.
Режимы химической обработки титана и его сплавов
Раствор Длительность обработки, мин
Назначение Состав (на 1 литр воды)
Рыхление оксидной пленки Нитрит натрия 150-200г; Углекислый натрий 500-700 г 120
Травление Плавиковая кислота 220-300 мл; Азотная кислота 480-550 ил 60-1200
Осветление Азотная кислота 600-750 мл; Плавиковая кислота 85-100 мл 3-10

После того, как свариваемая поверхность химически обработана, свариваемые кромки на 20 мм промываются бензином и протираются ацетиленом или этиловым спиртом. Сварочная пленка на предварительном этапе подвергается вакуумному отжигу, а затем – обезжириванию
Сварка проводится в специальных приспособлениях, либо на прихватках, выполненных ручной аргонодуговой сваркой W-электродом. Когда свариваемые поверхности уже готовы к работе, к ним нельзя прикасаться незащищенными руками.

Выбор режимов полуавтоматической сварки титана

При полуавтоматической сварке титана используется постоянный ток обратной полярности. При выборе режимов учитывается толщина металла, склонность сплава к росту зерна и подверженность термическому циклу. Чтобы максимально уменьшить рост зерна, стоит выбирать режимы с повышенными скоростями и незначительной погонной энергией.
Поскольку титан имеет высокое электрическое сопротивление, сварка проводится с небольшими вылетами электрода. Однако при работе с использованием невысоких токовых режимов есть риск непровара корня шва. Чтобы избежать этого, корень стоит выполнить ручной аргонодуговой сваркой W-электродом, а остальную разделку – сваркой плавящимся электродом. Основное положение – нижнее.
Если используется сварка с глубоким проплавлением на повышенных токовых режимах, необходимо использовать гелиево-аргоновую газовую смесь (80% + 20%). Для увеличения пластичности, прочности и устойчивости к образованию трещин сварочные швы требуют дополнительной термической обработки, выбрав режим в зависимости от состава сплава.

Техника полуавтоматической сварки титана

При механизированной сварке титана плавящимся электродом в инертных газах особые сложности связаны с обеспечением надежной защиты зоны нагрева. Поэтому, если применяется этот метод сварки, работа проводится в специальных камерах, где контролируется атмосфера.
Сварка в монтажных условиях проводится импульсно-дуговым способом, что обеспечивает более высокую производительность, чем альтернативный вариант – ручная сварка неплавящимся электродом при одновременном снижении погонной энергии в 2-2,5 раза.
В некоторых случаях используется вакуумная сварка титана и его сплавов, главным преимуществом которой является чистота металла шва, в котором не образуются примеси из неметаллических элементов и газов.
Режим сварки и ее техники необходимо выбрать так, чтобы обеспечить устойчивое горение дуги с минимумом разбрызгиваний. Для этого необходим струйный перенос электродного металла. Важно выбрать оптимальное соотношение сварочного тока, скорости подачи электродной проволоки, дугового напряжения и вылета электрода.

Газовая защита

  • струйная – с задействованием специальных приспособлений;
  • местная – в герметичных камерах малого объема;
  • общая – в камерах с контролируемой атмосферой (УБС-1, ВКС-1, ВУАС-1).

Рис. 1 Защитная камера для сварки титана

Дополнительные защитные устройства изготавливаются из нержавеющей стали. Необходимо, чтобы были предусмотрены газовые линзы и рассекатели. К газовой горелке прикрепляется специальная насадка для защиты кристаллизующейся сварочной ванны. Ее ширина должна быть 40-50 мм, а длина – 60-120 мм в зависимости от режима сварки. При сварке кольцевых поворотных и неповоротных стыков, а также трубчатых конструкций используются местные или малогабаритные камеры.

Рис. 2. Вспомогательное оборудование для защиты зоны сварки

Качество защиты можно определить по внешнему виду металла шва. Если его поверхность является серебристой или светло-желтой, защиту можно считать достаточной. Сварной шов желто-голубого цвета свидетельствует о нарушениях защиты, хотя в некоторых случаях такие швы вполне допустимы. О некачественном шве свидетельствует синевато-серый и темно-синий цвет.

Технология и особенности сварки титана

[Сварка титана и его сплавов] — сложный процесс, так как прочный и легкий титан, раскаленный до 400°С, становится легко разрушаемым под действием паров азота и кислорода.

Сварка должна выполняться с соблюдением определенных условий, не допускающих воздействия на материал окружающей среды.

Сварка титанового материала и его сплавов бывает следующей: аргоно-дуговая, плазменно-дуговая, холодная и др. Рассмотрим основные технологии.

Аргонодуговая сварка и полуавтоматом

Сварка титана и сплавов аргоном и сварка полуавтоматом востребованы, так как позволяют выполнить сложную и тонкую обработку материала.

Технология представляет собой чистую и качественную сварку для любых материалов, особенно это касается тех, к которым не применима традиционная сварка.

При соблюдении всех условий и требований сварочный шов будет устойчив к коррозии, а при нарушении условий качество шва будет значительно ниже.

Аргон используется для поддува с целью защиты металла от среды.

Аргоном можно обрабатывать крупные изделия, небольшие детали из титана и сплавов.

Также сварка аргоном может работать от малого тока, благодаря этому возможна обработка металла толщиной 0,5 мм.

Аргоном восстанавливаются титановые изделия, утратившие объем.

Аргоно-дуговая сварка состоит из следующих операций:

  • удаление оксидной пленки с обрабатываемого изделия, зачистка кромок газокислородом, поддува;
  • изделия обрабатываются раствором фтора и соляной кислотой при 65°.

Чтобы исключить реакцию титана и сплавов с окружающей средой, рабочее место защищается с внешней и внутренней стороны.

Для этого используются стальные или медные прокладки, прижимаемые к шву. Еще используются защитные козырьки или специальные насадки.

Так же участок сварки с двух сторон защищается бескислородными флюсами с содержанием фтора. Если защита была обеспечена качественно, то на шве образуется оксидная пленка.

Перед работой титан очищается стальной щеткой от грязи и коррозии и обезжиривается растворителем. Крайне не рекомендуется сваривать необезжиренные элементы и работать с такими элементами без рукавиц.

Технология сварки титана и сплавов аргоном осуществляется на постоянном токе, выдаваемого специальным токопроводящим устройством – горелкой с керамическим соплом с электродом из вольфрама.

Контактируя со сжатой электродугой, металлическая кромка начинает плавиться, в результате чего образуется ванна с температурой до 6000°.

Давление сжатой дуги обеспечивает оттеснение жидкого титана, и дуга горит в появившемся углублении, улучшая плавление.

Аргоно-дуговая технология основывается на применении источника питания постоянного тока DC прямой полярности, а для сварки полуавтоматом – обратной полярности.

Горелка снабжается датчиком дистанционного регулирования подачи тока для предотвращения нарушения процесса.

Аргон надежно защищает внутреннюю и наружную стороны рабочего места от влияния азота, водорода, кислорода, а также выполняет первичную защиту жидкой сварочной ванны, вторичную защиту кристаллизирующегося металла и пространства возле шва.

Для защиты жидкой сварочной ванны обязательным условием является правильно выбранная горелка, которая обязательно должна иметь керамическое сопло и газовую линзу.

И при работе полуавтоматом, и аргоном, если толщина обрабатываемого металла больше 15 мм, то потребуется присадочная проволока.

С тонким металлом сварка осуществляется без присадки и без зазора встык.

Титан, толщина которого превышает 15 мм, сваривается дугой в один прием, тем самым обеспечивается ровный цельный шов, не нуждающийся в зачистке, герметичный, прочный и долговечный.

Для определения эффективности и расхода аргона делается пробный шов. Качественный шов будет серебристым, а синий или желтый оттенок говорит о преждевременном снятии аргона.

Для обеспечения защиты кристаллизирующегося титана и пространства около шва используется специальная насадка на горелку, которая обеспечивает равномерное распределение аргона внутри оборудования.

Перед сборкой заготовки участок шва подвергается абразивной обработке. Любые дефекты на шве, например, трещинки и заусенцы, должны отсутствовать.

Аргонодуговая сварка сплавов имеет определенные особенности, учитывая которые можно создать шов хорошего качества.

Предварительно необходимо продуть горелку, также должна быть продута защитная насадка и прокладка для оборотной стороны шва.

Поджигание сжатой электрической дуги осуществляется осциллятором. Для погашения сжатой электрической дуги достаточно плавно снизить силу тока.

Предварительно нагреть металл нужно в том случае, если присутствует влага. Длина электродуги без присадочной проволоки должна быть одинаковой по диаметру с электродом.

С проволокой длина электродуги должна составлять 1-1,5 диаметра электрода. Сварка аргоном и полуавтоматом представлена на видео в статье.

Холодный и плазменный метод

Холодная технология или холодная сварка подразумевает сваривание титана и его сплавов путем сдавливания.

Холодная сварка представляет разрушение кристаллической решетки, вместо которой возникает новая решетка посредством соединения слоев титана. Холодная сварка выполняется в твердом состоянии на улице.

Метод позволяет получить надежное соединение без сложных технологий, не используя различные непростые приспособления.

Холодная сварка белого титана отличается тем, что обработка производится под действием давления без внешнего нагрева. Холодная сварка может осуществляться при любой температуре воздуха.

Сварка листов производится внахлест со специальными фиксирующими зажимами, которые позже снимаются, и листы соединяются.

Сварка плазменной дугой характеризуется высокой температурой до 30000° и наличием плазмотрона – главной части технологии.

В связи с высокими показателями плавления, по сравнению с аргоно-дуговой сваркой, сварка плазменной дугой обладает следующими достоинствами:

  • высокая производительность;
  • тепловое воздействие только на зону шва;
  • небольшое количество защитного газа;
  • стабильное горение малоамперной электродуги;
  • низкое влияние длины электродуги на качество шва.

Плазменная дуга возникает от плазмотрона. Есть 2 типа плазмотрона: с дугой прямого и косвенного действия.

Для первого плазмотрона характерно образование дуги между электродом из вольфрама, встроенным в газовую камеру и обрабатываемым титаном.

Сопло плазмотрона — электрически нейтральная часть, благодаря которой обеспечивается сжатие дуги.

Для данного типа плазмотрона характерно совмещение струи с дугой, благодаря чему обеспечивается высокотемпературный режим и тепловая мощность. Данная технология довольно популярна.

Создать электродугу между электродом и титаном непросто. Поэтому при подведении к титану плазмотрона, в первую очередь, нужно создать дугу между электродом и соплом, так называемую, дежурную дугу.

Затем соединяя дежурную дугу и факел титановой детали, автоматически образуется основная дуга между электродом и титаном.

Для второго типа плазмотрона характерно создание электродуги между электродом и соплом.

В основном использование такого вида плазмотрона необходимо для нагрева, напыления и т.д.

Плазменная сварка с дугой применима для тонкого металла менее 1 мм, а также для сложных случаев, например, для сварки титана с легированной нержавейкой. Все работы по сварке титана и сплавов представлены на видео.

Возможные дефекты

При сварке титана, если она не производится лазером, возможны дефекты. Согласно ГОСТ, дефекты появляются из-за несоблюдения технических условий, нарушения технологии, после чего конструкция становится непригодной.

По ГОСТ дефекты бывают следующих видов:

  • трещины;
  • поры;
  • твердые образования;
  • несплавления;
  • неправильный шов;
  • иные дефекты.

Трещины-разрывы в шве или прилегающих местах, согласно ГОСТ, недопустимы, так как создается центр разрушения.

Образование разрывов объясняется высоким содержанием в расплавленном металле углерода, никеля, водорода, фосфора. При сварке лазером вероятность образования трещин сводится к нулю.

Для устранения трещин нужно засверлить концы дефекта, затем устранить трещину механическим путем и строжкой, после этого участок зачищается и заваривается.

Поры, согласно ГОСТ — это полости, заполненные газом. Образуются из-за высокого газообразования.

Место с порами нужно переварить, предварительно зачистив механическим путем, так как дефект ослабляет конструкцию.

Твердые включения по ГОСТ – это инородные металлические и неметаллические вещества в шве, снижающие прочность шва и концентрирующие напряжение, поэтому место с дефектом вырубают до здорового участка и удаляют строжкой, затем заваривают.

Несплавления по ГОСТ — это отсутствие соединения между металлом и швом. Образуются при дуговой сварке из-за нерасплавления части кромки стыка.

Это может произойти, если неправильно выбрана форма угла, плохо зачищены кромки, неправильно выбран режим сварки. Такие дефекты снижают прочность шва. Место дефекта нужно вырубить, зачистить и вновь заварить.

Нарушение формы по ГОСТ — отклонение формы шва от установленных требований.

Причинами возникновения могут послужить колебания напряжения в сети, неправильный угол наклона и др. Последствием могут быть внутренние дефекты шва.

Для устранения место дефекта заваривается тонким швом электродом небольшого диаметра.

Технологии сварки титана и титановых сплавов

Титан обладает очень большой твердостью, неплохой коррозионной стойкостью. Из этого металла делают высокопрочные детали для танков, кораблей, автомобилей, оборудование для медицинского сектора, трубы. Сварка титана проводится аргонодуговым методом, поскольку он минимизирует вероятность образования вредоносных оксидов, которые негативно влияют на прочность сварного шва.

Особенности сварки титановых сплавов

Температура плавления титана составляет порядка 1500 градусов. При наличии примесей температура плавления может меняться как в большую, так и в меньшую сторону. Металлические сплавы на основе титана обычно сохраняют свою структуры при нагреве до 500 градусов по Цельсию (коррозийная стойкость сохраняется и при более серьезном нагреве).

Необходимо защитить сварной шов, чтобы избежать появления вредоносных оксидов и различных сложных соединений на основе азота и титана. Механизм образования таких соединений следующий:

  1. В воздушной атмосфере постоянно присутствуют различные газы — азот, кислород, углекислый газ. В твердом состоянии титан не вступают в химическую реакцию с этими веществами из-за особенностей межатомных связей в титановом сплаве.
  2. Во время сварочных работ происходит частичное или полное расплавление титана в локальной области нагрева с последующим объединений расплавленных фрагментов друг с другом (в таком случае между отдельными титановыми деталями образуются прочные межатомные связи, что делает соединение надежным).
  3. При нагреве металла также происходит активизация газов, которые находятся в воздушной атмосфере. Из-за этого кислород, азот и прочие газы начинают активно контактировать с расплавленным титаном. Это может вызывать две реакции — механическую и химическую. При механической реакции атмосферные газы проникают вглубь металла, оседают там в виде микроскопических пузырьков. При химической реакции газы контактируют с титаном на субатомном уровне, что приводит к образованию различных оксидов и сложных соединений.

Пузырьки и оксиды оказывают негативное воздействие на качество сварного шва, что снижает его прочность. В случае большой концентрации вредоносных элементов сварное соединение становится ненадежным. Оно растрескивается даже в случае не слишком большой нагрузки, оно заметно чаще покрывается коррозией.

Для повышения качества сварки имеет смысл применять обдувание локальной области различными инертными газами. В таком случае газы будут вытеснять азот и кислород, что будет препятствовать образованию пузырьков и оксидов. Именно поэтому электрошлаковая и сварка аргоном являются оптимальными способами соединения металлических изделий на основе титановых сплавов.

Подготовительные работы

Чтобы шов получился прочным, необходимо провести подготовительные работы:

  • Большинство металлических изделий из титана покрыты защитной пленкой оксидно-нитратного типа. Пленка появляется естественным образом во время тепловой обработки металлов. Перед сваркой необходимо избавиться от этой пленки, поскольку из-за нее будет снижаться качество. Для этого необходимо выполнить травление металла в смеси на основе фторида натрия (1 часть), воды (13 частей) и соляной кислоты (7 частей). Время травления — не более 10 минут, температура — порядка 50-60 градусов.
  • Также перед проведением сварочных работ необходимо зачистить край металлического объекта, где будет пролегать сварной шов. Для очистки рекомендуется использовать металлические щетки высокой жесткости. Помимо края рекомендуется также выполнить зачистку участка, который располагается в радиусе 1,5-3 сантиметров от стыка. После проведения очистки нужно не забыть сделать обезжиривание металла (с помощью спирта или любого другого реагента).
  • Перед работой также рекомендуется подобрать пруток, который будет выступать в качестве основы для сварного шва. Химический состав прутка имеет первостепенное значение. Сварной пруток и детали для сварки должны обладать примерно одинаковым составом, чтобы шов получился прочным. Чем сильнее отличается состав, тем выше будет шанс появления трещин и дефектов.

Сварка титана полуавтоматом

Соединение отдельных титановых элементов осуществляется с помощью электрической дуги, которая создается вольфрамовым электродом. Преимущества: простота работ, высокая скорость застывания сварного шва.

Рекомендуется использовать постоянный ток прямой полярности. Это значительно ускоряет плавление титановых краев, что минимизирует шанс появления вредоносных оксидов. Гашение и зажигание горелки рекомендуется выполнять вне свариваемого объекта на специальных планках.

Обратите внимание, что сварка титана полуавтоматом может привести к образованию оксидов и кислородных пузырьков в металле. Для минимизации последствий такого сценария рекомендуется обрабатывать шов инертным газом (аргон).

Сварка титана аргоном

Методика аналогична предыдущему методу. Два объекта из титана приближаются друг к другу, за счет электрической дуги происходит локальное расплавление металла с последующим соединением.

Главное отличие этого метода заключается в том, что в аргонодуговых сварочных аппаратах подача защитного инертного газа автоматизирована. К горелке отдельных блоком подключается газовый баллон с аргоном. Во время сварки происходит автоматическое распыление защитного газа через сопло. Одновременно с этим происходит генерация электрической дуги с помощью вольфрамового электрода. Этот метод обеспечивает высокую степень защиты от образования оксидов и пузырьков. Оборудование стоит достаточно дешево, сварщику не нужен большой опыт.

Электрошлаковая

Для титановых сплавов с большим содержанием олова или алюминия можно очень часто используется технология электрошлаковой сварки. Эта технология является достаточно сложной, а для ее освоения рекомендуется получить соответствующее образование. Основные особенности электрошлаковой технологии:

  • Для больших деталей с крупными сечениями рекомендуется применять флюсы в среде аргона. Это обеспечит высокое качество защиты деталей.
  • При сварке небольших деталей флюсы можно не использовать. Оптимальные технические параметры работы: сила тока — 1700 ампер, напряжение — 15 вольт, расход аргона — около 7 литров в минуту.
  • Для прессованных профилей электрошлаковую сварку лучше не использовать. Прочность в данном случае будет достаточно низкой в сравнении с альтернативными технологиями.

Контактная

Применение контактной технологии может быть вполне оправдано, если вам нужна сварка титановых труб. Основные особенности:

  • Для сварки контактным методом подходят трубы, у которых диаметр составляет 1-2,5 сантиметра, а толщина стенок — около 1 миллиметра. Такие трубы не нуждаются в защите инертными газами.
  • Оптимальное зарядное напряжение в данном случае — 900 вольт (для труб 10 мм X 1 мм) либо 2000 вольт (для труб 25 мм X 1,5 мм).
  • Перед сваркой необходимо обязательно выполнить травление кромок труб.

Качество

После проведения сварочных работ необходимо выполнить контроль качества. Для этого необходимо выполнить осмотр шва: главные параметры здесь — это цвет и его структура.

Цвет шва

Серебристый цвет с характерным ярким отливом

Очень высокое качество шва. В естественных условиях чистый титан обладает бело-серебристым цветом. Поэтому серебристый цвет шва указывает на то, что во время сварки в состав металла не попали какие-либо посторонние примеси. Такой шов не растрескается со временем, не покроется коррозией, не деформируется под действием высоких нагрузок.

Белый или желтоватый

Высокое или хорошее качество. Желтый цвет шва указывает на то, что во время сварки в металле произошло окисление с образованием простых оксидов на основе титана. Однако таких оксидов в металле образовалось не слишком много. Поэтому качество сварного шва находится на достаточно высоком уровне. То есть такой шов без проблем выдержит средние и высокие физические перегрузки, не растрескается со временем. Выдержит воздействие не агрессивной коррозийной среды.

Рыжий, коричневый, серый, черный, синеватый

Плохое качество шва. Подобный цвет указывает на то, что во время сварки образовалось большое количество оксидов, а также соединений на основе азота и титана. Такой шов является крайне ненадежным. Он растрескается при перегрузках, может покрыться ржавчиной и окалиной. По ГОСТ детали с таким качеством шва не допускаются к эксплуатации. Требуется демонтаж шва, проведение повторной сварки с удалением поврежденного фрагмента, переплавка сварной конструкции.

Структура

В случае проведения качественной сварки шов должен получиться ровным и однородным, без каких-либо уплотнений и без деформированных участков. Если в области шва образовалось большое количество неровностей (небольшие вмятины, уплотнения, бугорки-точки и так далее), то это может указывать на то, что при сварке пузырьки воздуха (кислород, азот, углекислый газ) проникли в толщину сплава. Подобный сценарий является достаточно негативным, поскольку пузырьки воздуха плохо влияют на твердость сварного шва.

Заключение

Титан представляет собой прочный тугоплавкий металл. Детали из титановых сплавов можно соединять друг с другом с помощью сварки. Основные технологии — сварка титана аргоном или полуавтоматом, электрошлаковый метод и другие. Во время сварки рекомендуется проводить обработку сварной поверхности инертным газом, чтобы минимизировать риск появления вредоносных оксидов и пузырьков в металле. Качество можно определить по цвету и структуре сварного шва.

Используемая литература и источники:

  • Николаев Г. А. Сварка в машиностроении: Справочник в 4-х т. М.: Машиностроение, 1978.
  • Полькин И. С. Упрочняющая термическая обработка титановых сплавов. M.: Металлургия, 1984.
  • Welding and Manganese: Potential Neurologic Effects. The inhalation of nano particles National Institute for Occupational Safety and Health.

Сварка титана аргоном

Вопросы, рассмотренные в материале:

  • Что необходимо знать о сварке титана аргоном
  • Как правильно подготовиться к процессу сварки титана аргоном
  • Как выполняется сварка титана аргоном
  • Какие дефекты могут проявиться во время сварки титана аргоном и как их устранить

Среди других металлов титан выделяется малым весом и способностью противостоять коррозии. По этой причине он активно используется в производстве сложных узлов для нужд авиации, судостроения, машиностроения. В этой статье мы поговорим о таком виде обработки, как сварка титана аргоном.

Технология и особенности сварки титана аргоном

Сварка титана является сложной задачей, так как для его расплавления требуется очень высокая температура. Однако при сильном нагреве этот металл становится химически очень активным к входящим в состав воздуха газам.

Далеко не каждый знает, но титан, относясь к самым прочным металлам на нашей планете, достаточно часто встречается в природе – даже чаще, чем, например, цинк или медь. Этот металл тусклого серого цвета плавится при 1700 °C. С технической точки зрения его основная ценность, как мы уже говорили, состоит в высокой стойкости к ржавлению, а также относительно небольшой теплоте при сваривании.

Температура плавления сплавов титана зависит от марки и колеблется в пределах 1470 – 1825 °C. По сравнению с другими разновидностями металлов, они отличаются легкостью (за счет низкой плотности) при высокой прочности, из-за чего их используют в качестве материала для велосипедных рам, деталей гоночных авто. Но нужно понимать, что специфические свойства сплавов превращают их сварку в сложный процесс.

Необходимо отметить, что металл может находиться в одной из стабильных фаз, их обозначают латинскими буквами α и β:

  • Фаза α представляет собой состояние при температуре окружающей среды, при этом у металла мелкозернистая структура, он полностью инертен к скорости охлаждения.
  • Фаза β достигается при температуре от 880 0 С: зерно становится крупнее, возникает чувствительность к охлаждению (скорости процесса).

Указанные фазы стабилизируют при помощи добавок и легирующих элементов: O, N, Al (для α) или V, Cr, Mn (для β). По этой причине все титановые сплавы принято разделять на группы в соответствии с использованным типом присадок:

  • ВТ1 – ВТ5.1 Это так называемые α-сплавы. Отличаются пластичностью, хорошо свариваются, но их прочность не повышается за счет термообработки.
  • ВТ 15 – 22. β-сплавы, которые свариваются хуже, нередко с появлением холодных трещин. На качестве соединения сегментов негативно отражается тот факт, что во время сварки зерна структуры увеличиваются в размерах. Однако термообработка позволяет частично повысить прочность сплава.
  • ВТ4 – 8, ОТ4. Группа α + β. Свойства таких промежуточных сплавов зависят от вида и доли использованных добавок.

Стоит более подробно остановиться на свойствах титана, из-за которых возникает сложность сварочных работ:

  • плотность 4,51 г/см³;
  • прочность 267 – 337 Мпа;
  • температура плавления 1668 0 С;
  • низкая теплопроводность;
  • возможность самовозгорания при нагреве до 400 °C и контакте с кислородом;
  • окисление углекислотой;
  • образование твердых, но хрупких нитридных соединений при нагреве до 600 °C и прямом контакте с азотом;
  • способность поглощать водород при достижении 250 °C;
  • увеличение зерна при 880 °C и выше.

Повышение температуры до отметки 400 – 500 °C и более является критичным для титана. Сильный нагрев влечет за собой резкое повышение химической активности, из-за чего металл вступает в реакцию с атмосферным воздухом. Все это негативно отражается на прочности сварного шва, образуются гидриды, нитриды, карбиды, пр. Несоблюдение ГОСТа чревато тем, что шов не выдержит даже легкого удара.

Проведенная по всем правилам сварка аргоном обеспечивает прочность шва 0,6 – 0,8 от показателя самого металла.

Для сварных швов действует ГОСТ Р ИСО 5817-2009, он фиксирует качество сварки таких металлов: стали, титана, никеля, их сплавов, максимально допустимые уровни дефектов изделия.

Чистый титан мало используется в производстве из-за недостаточной прочности. Поэтому если речь идет, например, о сварке титана аргоном, подразумевается какой-либо его сплав, иными словами, титан и легирующий элемент.

Как правильно подготовить детали для сварки титана аргоном

Сварка титана аргоном проводится при полной изоляции свариваемых поверхностей от атмосферы, поэтому чаще всего применяются автоматическая или полуавтоматическая технология.

Безусловно, ручная сварка этого металла возможна, но для нее используется специальная горелка с керамическим соплом: через нее под давлением подается инертный газ, аргон, который вытесняет воздух.

На схеме показаны приспособления для защиты шва газом и его подачи в повышенном объеме.

Перед сваркой титана аргоном подготавливают кромки и присадки, поэтому также приводим таблицу разделки кромок.

Необходимо зачистить металлические поверхности стальной щеткой, «шкуркой», обезжирить.

Одним из самых распространенных растворителей для обезжиривания металлических поверхностей является ацетон, но у него резкий запах, он довольно токсичен. Об этом говорит тот факт, что ацетон относится к 4 классу опасности. При вдыхании в течение небольших отрезков времени его умеренных и высоких концентраций появляется раздражение глаз, дыхательных путей, повышенная частота пульса, головные боли, тошнота, рвота и даже возможна клиническая кома.

Рекомендуем статьи по металлообработке

Поэтому стоит выбирать более безопасные, но эффективные составы для очищения поверхности металла. Один из вариантов – денатурированный спирт, его наносят на металл безворсовой тканью. Это спирт с добавками, из-за которых его употребление в пищу становится невозможным. С одной стороны, они имеют ужасный вкус, а с другой – вызывают рвоту, и даже могут стать причиной слепоты.

Перед соединением детали из титана подвергают травлению смесью соляной кислоты с водой и фторидом натрия в следующей пропорции: 350 мл HCl, 650 мл дистиллированной воды, 50 г фторида натрия. На травление уходит около 10 минут при 60 – 65 °C.

Еще один способ, позволяющий удалить оксидную пленку – это смесь из 2 – 4 % фтористоводородной кислоты и 30 – 40% азотной кислоты. Травление длится 30 секунд, а температура не превышает 60 °C.

После этого металл тщательно шлифуют при помощи наждачной бумаги до № 12, проволочных щеток, шабер. Важно убедиться, что получились ровные края деталей без заусенец и трещин. Аналогично зачищается и присадочная проволока для сварки титана аргоном. Далее пора переходить к сварке.

Работа в среде защитного газа аргона ведется с помощью присадочных материалов. Последние делятся на группы по составу (палладий, ванадий, алюминий) и содержащейся в них доле кислорода. В таблице есть характеристики присадок из титана и его сплава:

Очень важно, чтобы прутки и проволока при сварке титана не выходили из-под газовой защиты, так как присадки загрязняются на воздухе.

Аргонодуговая технология требует применения постоянного тока прямой полярности и вольфрамовых электродов. Иногда приходится использовать специальные приспособления, в которые поступает инертный газ, вытесняя воздух.

Возможна сварка титана аргоном при помощи медных, стальных подкладок. В них делают отверстия для подачи газа.

Для соединения труб используют специальные фартуки с разным закруглением, чьи характеристики определяются диаметром трубы.

Полуавтоматическую или автоматическую технологии осуществляют в специальной капсуле, заполненной аргоном либо гелием. Если речь идет о трубах, их не помещают в защитную среду, а герметизируют и заполняют аргоном.

Еще одно немаловажное требование к такой работе – это наличие перчаток на руках, ведь даже чистые руки оставляют на кромке потожировые следы. Последние негативно сказываются на качестве сварного шва.

Методы сварки титана аргоном

Сварка титана осуществляется как «холодным» методом, так и методом дугового флюса либо при помощи плазменно-дуговой сварки. Однако наибольшее распространение получил метод сварки титана аргоном, то есть плавлением в изолированной аргоновой среде, так называемая TIG-сварка.

Для соединения деталей крупного сечения применяют метод электрошлаковой сварки аргоном.

Немаловажное значение играет вид сплава. Так, напомним, что титан марки ВТ1-ВТ5 отлично сваривается, хотя не подлежит закалке. Сплавы ВТ15 — ВТ22 свариваются значительно хуже, образуя крупнозернистый, относительно слабый шов, но закалка может повысить его прочность. Остальные виды титановых сплавов считаются промежуточными.

Сегодня используются следующие виды контактной сварки аргоном:

  • стыковая;
  • точечная;
  • роликовая;
  • конденсаторная стыковая (для труб).

При работе с использованием флюса в ход идет бескислородный флюс АН-11 или АН-Т2.

Ручная сварка сплавов с титаном аргоном производится постоянным током прямой полярности в пределах 90 – 200 А. Отметим, что этот показатель зависит от толщины соединяемых деталей, калибра электрода и диаметра присадочной проволоки.

Следите за цветом получившегося шва. Если перед вами яркий серебристый шов, все хорошо. Тогда как желтоватый или голубой оттенок говорит, что рано прекращена подача защитного газа. Самый худший вариант – это серые, темно-синие или белесые швы, поскольку их нужно полностью удалять и качественно зачищать стыки для повторного соединения. Для зачистки берут щетку для металла из нержавейки.

Нюансы ручного режима сварки титана в аргоне

Добиться прочного шва при сварке титана аргоном удается за счет обеспечения чистоты поверхности деталей и присадки. Другим обязательным условием является правильная настройка сварочного аппарата. При несоблюдении техники сварки аргоном на месте шва всегда появляются сварные дефекты. Прежде чем приступать к работе, выполните продувку и прочистку горелки, защитной насадки. Не забывайте про подкладки для обратной стороны шва – с их помощью можно проверить наличие воздуха в системе.

Сварка ведется без предварительного нагрева. Исключение составляют ситуации, когда возможна влажность, наличие конденсата на титане – тогда нужен нагрев до 70 °C.

При TIG-технологии рекомендуется высокочастотное зажигание для дуги. Когда вы работаете с присадкой, длина дуги равна 1 – 1,5 сечения электрода. Если сварка аргоном производится без присадки, этот параметр соответствует диаметру вольфрамового электрода. Помните, что в царапинах, образующихся на металле при касании вольфрамовых электродов, остаются частицы вольфрама. Когда все работы завершены, затухание дуги должно происходить постепенно, для этого плавно понижайте ток. Защиту сварного шва, околошовной зоны обеспечивают и после выключения дуги, когда температура опускается до 427 °C.

При соединении аргоном тонкостенных деталей зазор между кромками должен составлять 0,5 – 1,5 мм. В этом случае можно не формировать кромки и отказаться от присадочной проволоки. Кстати, последняя должна совпадать по составу с основным свариваемым металлом.

Сварка титана аргоном предполагает такие режимы: если используется вольфрамовый электрод диаметром 1,5 – 2 мм и присадочная проволока диаметром 2 мм, а толщина свариваемых заготовок составляет 2 мм, нужно выдерживать ток 90 – 100 ампер. Повышение толщины металла до 4 мм позволяет варить его током в 120 – 140 ампер. И самое главное, о чем нужно помнить: для работы с титаном и его сплавами используется переменный ток постоянной полярности.

Также есть ряд других существенных условий для качественной сварки титана аргоном:

  • Для ручной технологии используется короткая дуга, не допускаются колебания электрода, присадки. Сварщик осуществляет движение вдоль шва.
  • Сваривание ведется углом вперед, то есть электрод должен быть направлен в сторону, противоположную направлению движения.
  • Угол между присадкой и электродом 90°.
  • Присадка подается в сварочную ванну непрерывно.
  • После гашения дуги защитный газ продолжает подаваться, обеспечивая охлаждение ниже 400 0 С, в среднем на это уходит минута.

Дальнейшее охлаждение металла является гарантией качественного шва. Вы можете определить это по цвету. В норме шов светлый, соломенный, желтый. А вот серый, синеватый или черный говорят об окислении, что плохо сказывается на качестве.

Технология сварки аргоном полуавтоматом или автоматом совпадает с ручной. Единственный нюанс, о котором нельзя забывать – отверстия в сопле горелки. В соответствии с ГОСТ их диаметр равен 12 – 15 мм. Зажигать и гасить горелку рекомендуется на специальных подкладках, планках.

Как выполняется автоматическая сварка титана

Для этого используется вольфрамовый электрод. Причем размер отверстий сварочной горелки должен находиться в пределах 12 – 15 мм. Также нужно учесть, что соединение неплавящимся электродом лучше проводить постоянным током прямой полярности.

Высокая активность титана вынуждает зажигать и гасить горелку на специальных планках, вне изделия. Как и при ручной технологии, газ подают еще 1 минуту после гашения дуги, защищая шов и переходную зону от окисления. Далее представлены режимы для автоматической сварки титана аргоном в защитных газах и под флюсом:

Толщина металла, мм

Диаметр вольфрамового электрода, мм

Напряжение, В

Сила тока, А

Скорость сварки, м/ч

Расход аргона, л/мин

В горелке

В подкладке с обратной стороны шва

Технология сварки титана — описание и пошаговая инструкция с видео

Данный металл не относится к категории редких. В земной коре его значительно больше, чем, к примеру, свинца, цинка или меди. В титане удачно сочетаются небольшая плотность и прочность сплавов на его основе, а если учесть стойкость перед коррозией даже в агрессивной среде, то интерес к нему во многих отраслях промышленности вполне понятен.

Высокая цена на Ti (22-й элемент таблицы Менделеева) объясняется тем, что его обработка – процесс довольно сложный и затратный. Эта статья познакомит читателя с технологиями сварки титана.

Общая информация

Не зная свойств и особенностей металла и его сплавов, понять все нюансы сварки достаточно сложно.

    Плотность титана (г/см³) – 4,51. Прочность (МПа): металла – в пределах 267 – 337, сплавов – до 1 230. Температура плавления (ºС): 1668.

Специфические свойства металла

    Способность титана к самовозгоранию в кислородной среде. Низкая теплопроводность. Превышение значения температуры более 400 ºС инициирует активность металла. Титан интенсивно поглощает водород и бурно реагирует на контакт с азотом. Под воздействием углекислого газа, паров воды быстро окисляется.

Кроме этого, необходимо учитывать и то, что металл может находиться в одной из двух стабильных фаз, которые обозначают латинскими буквами α и β. Чем они характеризуются?

    Фаза α – в таком состоянии титан находится при температуре окружающей среды. Структура – мелкозернистая, и металл полностью инертен к скорости охлаждения. Фаза β – в такое состояние титан переходит при температуре от 880 ºС. Зерно становится крупнее, и появляется чувствительность к охлаждению (скорости процесса).

Указанные фазы можно стабилизировать, введя в металл определенные добавки и легирующие элементы – O, N, Al (для α) или V, Cr, Mn (для β). Поэтому титановые сплавы, в зависимости от вида присадок, делятся на группы:

    ВТ1 – ВТ5.1 Их называют α – сплавы. Обладают пластичностью, хорошо свариваются, однако термообработка не повышает их прочность. ВТ 15 – 22. Группа β – сплавов свариваются намного хуже, причем возможно появление холодных трещин. Размеры зерен структуры при этом увеличиваются, а это отражается на качестве соединения сегментов в худшую сторону. Плюс в том, что термообработка частично повышает прочность сплава. ВТ4 – 8, ОТ4. Группа α + β, по сути, промежуточное звено. Свойства таких сплавов во многом определяются видом и процентным содержанием введенных добавок.

Основные способы сварки титана

Не все распространенные технологии применимы к этому металлу и его сплавам. Главная причина – химическая активность титана. Попадание в рабочую зону инородных соединений (нитридов, оксидов, карбидов) резко снижают качество шва.

Используемые для сварки титана методики

    Дуговым флюсом. Холодная. Электронным лучом (плазменно-дуговая). В среде аргона. Наиболее популярный вариант, хотя есть и некоторые другие.

Особенности сварки титана

    Высокая скорость технологической операции. Это связано с тем, что длительное термическое воздействие на отдельном участке приводит к изменению структуры материала из-за увеличения размера зерен. Как следствие – металл становится ломким (хрупким). Полная изоляция от атмосферы. Причем не только рабочей зоны (сварочной ванны), но и тех участков, которые разогреваются до +625 (и более) ºС.

Сварка титана (сплавов) аргоном

    Высокое качество сварного соединения. Работа на малых токах. Следовательно, можно сваривать детали небольшой толщины (тонкостенные), так как вероятность прожога практически исключена. Возможность наращивания объема детали на дефектных участках (например, в местах образования раковин). Получение шва с любыми параметрами, что позволяет обрабатывать (соединять) как крупногабаритные образцы, так и сравнительно мелкие.

Подготовка свариваемых образцов (кромок)

Механическая обработка и обезжиривание, при необходимости – травление кислотой. Задача – полное удаление пленки оксидов примерно на 20 мм от подлежащих соединению кромок. Специфика в том, что вся работа должна проводиться в защитных перчатках (рукавицах). Касание деталей руками недопустимо из-за возможного загрязнения сплава.

Если механической очистки недостаточно, то прибегают к газокислородной (с помощью горелки).

Что можно использовать:
    Наждачная бумага. Шаберы. Щетки металлические с проволокой из «нержавейки» сечением 0,25 (±5) мм или иные подходящие приспособления (абразивные материалы). Раствор фтора, кислота соляная (подогретые до 60 – 65 ºС).

Критерии оценки качества подготовки

    Отсутствие на образце заусениц, трещин, вкраплений и так далее. Ровный серебристый оттенок титанового сплава.

Проволока

Она выбирается в соответствии с группой сплава, подлежащего сварке (см. выше). На бирке (или упаковке) обязательно есть необходимая информация, так как вся продукция маркируется.

Горелка

Для сварки титана любая не подходит. Используются модели с соплом из керамики и специальной (газовой) линзой.

Процесс сварки

Условия

    Электрод – вольфрамовый. Ток – постоянный, прямой полярности. Подача проволоки – непрерывная.

Сварку титана вручную возможна, если получается организовать местную защиту рабочей зоны. Вспоминаем – металл довольно быстро окисляется. Предохранение от этого лицевой стороны обеспечивается газовой струей (аргон + гелий). А как быть с тыльной? Наиболее распространенный вариант – накладки из меди или стали, которые плотно прижимаются к месту стыка свариваемых кромок. Но это применимо, если обрабатываются детали простой конфигурации.

Сложные в этом плане образцы, когда шов довольно часто меняет направление, свариваются в специальных камерах, в режиме полу- или полностью автоматическом. В таком закрытом объеме можно контролировать и поддерживать на необходимом уровне газовую среду. Предварительно рабочие камеры вакууммируются, после чего заполняются аргоном. Мастер ведет сварку в специальном скафандре.

Перед началом операции проверяется качество очистки кромок. Достаточно провести по участкам будущей рабочей зоны салфеткой или тряпочкой белого цвета, чтобы понять, необходима ли еще одна, дополнительная, «финишная» подготовка металла.

Сварка ведется встык, присадка используется лишь для образцов с толщиной стенок более 1,5 мм. Сечение плавящейся проволоки, которая при этом применяется – от 1,2 до 1,8 мм. Защитная среда несколько иная – аргона меньше (порядка 20%), а гелия больше (соответственно, около 80%). Хотя эти данные – приблизительные. Этим обеспечивается снижение пористости и получение более широкого шва.

Результат работы визуально оценить несложно. Серебристый оттенок – шов хороший, желтоватый или с синевой – качество не на высоте.

Остается добавить, что при сварке титана, равно как и других металлов и сплавов, должны неукоснительно выполняться все требования по ТБ.

Автор надеется, что эта статья окажется полезной для читателя. Успехов в сварочном деле!

Полуавтоматическая сварка титана и его сплавов

Сплавы

Соединения на основе титана плавятся при температуре 1468-1830°С. Элементы отличаются повышенной коррозионной и жаростойкостью. Сплавы легко поддаются закалке при введении снижающих пластичность добавок – ванадия, хрома, марганца.

При нагревании до 400°С металл активно вступает в реакции с азотом и кислородом, находящимися в воздухе. При нагревании до 800°С зернистость и пористость металла возрастает. Потому сваривание деталей из титана должна осуществляться при исключении воздействия окисляющих газов.

Электронно-лучевая сварка

Электронно-лучевая сварка титана считается одним из популярных способов соединения изделий. При этом сваривание позволяет получить прочное и качественное соединение. Данный процесс основан на применении тепла, которое выделяется при торможении остросфокусированного пучка частиц, ускоренных до показателей высокой энергии.

Главным компонентом, при помощи которого выполняется сварка конструкций из титана, является луч, выделяемый специальным устройством — электронной пушкой. Питание пушки осуществляется при помощи высоковольтного источника постоянного тока.

Процесс обычно происходит в условиях вакуума, который защищает от негативных внешних условий. На заводах и предприятиях имеется специальная камера для сварки титана, которая защищает металл от взаимодействия с атмосферной средой и снижает потерю кинетической энергии электронов.

Какие методы применяют?

Ручной дуговой

Ручная сварка изделий из титана аргоном используется преимущественно в небольшом производстве или при особо сложных работах при невозможности применения автомата.

При сварке электрод ведется прямо, с наклоном в переднюю сторону по направлению шва. Если необходимо применение присадочной проволоки, то она должна поступать постоянно, стержень при этом ставится перпендикулярно к свариваемым элементам.

По окончании аргонодуговой сварки защитная среда подается еще на протяжении 2 минут – за это время должен успеть охладиться заключительный участок шва.

Автоматический

Выполняется на постоянном токе с помощью вольфрамовых электродов при прямой полярности. Горелка подбирается с диаметром сопла 12-15 мм.

Дуга возбуждается и гасится не на элементах, а на начальных планках, так как в ином случае возможно проплавление соединяемых изделий.

Электрошлаковый

Способ используется редко, в основном для нержавеющих деталей с добавлением к титану олова или алюминия. Подразумевается применение пластинчатых электродов размером 12х60 мм. С их помощью получается высокопрочный шов. Ток сварки достигает 1,5 кА.

Сварка прессованных изделий выполняется круглыми стержнями сечением 8 мм.

Контактный

Для такого метода титановые электроды требуются только для подвода дуги к рабочей области. Розжиг ее выполняется между соединяемыми зонами изделий, сближающихся при давлении сварочных стержней.

Способ используется для сопряжения тонких листовых изделий.

Под флюсом

Шовная линия покрывается флюсовым порошком. Защищающие газы выделяются в процессе плавления порошка под электродугой, закрывая околошовную область и сварную ванну.

Способ позволяет сваривать элементы толщиной до 5 мм при соединении в угол, при сопряжении внахлест – толщиной до 3 мм. Сварка выполняется очень быстро – со скорость до 50 м/ч.

Холодный

Холодная сварка используется в твердой фазе на обычном воздухе под высоким давлением. Сопряжение осуществляется внахлест. Изделия зажимаются специальными зажимами, после удаления которых происходит деформация титана. Таким образом детали соединяются.

Шовный роликовый

Применяются стержни в форме роликов, катящихся вдоль будущего шва и сжимающие соединяемые элементы. На линию подается мощные токовые импульсы. Проплавленные зоны перекрывают друг друга на 15%, образуя герметичный рубец.

Режимы конденсаторной стыковой сварки титановых труб

Конденсаторный способ сварки титановых труб подразумевает периодическую подачу мощных импульсов, а не постоянную. Защитные газы при этом не требуются. Соединяются трубы сечением до 23 мм с толщиной стенки не выше 1,5 мм.

Контактная сварка

Чем еще можно сваривать титан и его сплавы? Для сварки деталей из этого металла может применяться контактный способ. Согласно нормам ГОСТа данный метод разрешается использовать для титана, потому что оптимальный показатель скорости сваривания титановых сплавов равен 2-2,5 мм в секунду.

Не желательно превышать установленную скорость, потому что это может негативно отразиться на прочности сварного шва. При этом этот показатель особенно важен при использовании контактной сварки, потому что она выполняется очень быстро. Свариваемые кромки не нужно защищать и фрезеровать.

Контактная сварка может выполнять разными методами:

  • точечным;
  • линейным;
  • конденсаторным.

При этом стоит обращать внимание, что каждый метод подбирается индивидуально. Он может зависеть от уровня толщины заготовок, от степени давления электродов, от их диаметра, от размера толщины и длины свариваемой пластины, от периода сжатия, от времени прохождения тока через металлическое изделие.

Любой метод сварки титана имеет важные особенности и требования, от которых зависит прочность сварного шва. Если сваривание производится в условиях большого предприятия, то обязательно выполняется УЗК сварного шва титановой трубы, которое позволяет определить степень прочности соединения. Если она будет низкая, то это может негативно отразится на всей конструкции.

Ручной процесс

Электроды

При ручной сварке используются вольфрамовые стержни, заточенные под углом 35-40°. При интенсивном применении стержень требуется периодически подтачивать.

Чем на больший угол сточен электрод, тем больше глубина проплавки.

Проволока

Проволока используется только из соответствующего сплава титана. Предварительно она прокалятся под вакуумом для удаления водорода и обязательно защищается от окисления. Такая проволока должна храниться в закрытой тубе не более 5 суток.

Для сварки изделий толщиной до 1,5 мм встык применение присадки необязательно.

Горелка

Горелка применятся со специальными приспособлениями, уберегающими титан от азотирования и окисления. По ГОСТ область соединения должна защищаться от воздействия атмосферного воздуха.

Особенности технологии

Должны обеспечиваться беспрерывное поступление присадки и постоянная скорость перемещения электрода, точность движений.

Скорость расхода аргона – 5-8 л/мин, на изнаночной стороне рубца – 2 л/мин.

При соединении труб необходима герметизация их концов, инертный газ поступает от насоса.

Перед тем как сварить титан в домашних условиях, следует знать, что трубы невозможно соединить качественно, за исключением применения конденсаторной сварки. Их можно сопрягать и без инертного газа, параметр зарядного напряжения должен составлять 850-2100 В.

Подготовка титана к сварке

Подготовительные работы с титаном состоят из обработки кромки деталей, очистки присадочного прутка и обеспечения защиты другой стороны детали. Чтобы предотвратить появление холодных трещин и снизить хрупкость металла во время сварки, желательно снять верхний слой металла, так как в нем содержится большое количество кислорода и азота, а частицы этого слоя могут попасть в сварной шов.

Технология сварки титана подразумевает выполнение разделки кромок с углом раскрытия 60°. Хотя если толщина детали меньше 4 мм, то можно этого не делать. В том случае, когда деталь была изготовлена путем газовой или плазменной резки, желательно удалить не менее 5 мм кромки. Также производится тщательная очистка кромки и присадочной проволоки непосредственно перед началом сварочных работ. Очистка выполняется механически напильником, абразивным кругом, а также с помощью химических средств (ацетона или растворителя).

Согласно технологии сварки титана, следует большое внимание уделить защите обратной стороны деталей и корня шва. Даже если сварочный шов не будет выходить на другую сторону, титан может вступить в реакцию с газами из окружающего воздуха, что возникает даже при температуре +300…+400 °С.

Поддерживайте рабочее место в чистоте. На крупных производствах в сварочном цехе оборудуют специальное место, где выполняются сварочные работы по титану. Здесь не должно быть никаких факторов, которые могут негативно повлиять на качество сварки: сквозняка, пыли, влаги, жира и прочих загрязнений. Все остальные процессы обработки металла (резка, зачистка, краска) должны выполняться в другом месте. Помимо этого, важно контролировать влажность воздуха.

Технология сваривания толстостенных конструкций несколько отличается. Здесь допускается отсутствие защиты детали с другой стороны, если сварочный шов не выходит наружу и деталь сильно не нагревается. Такой результат достигается путем производства коротких швов (по 15–20 мм), между выполнением которых обязательно делается перерыв для охлаждения.

Сварка титана и его сплавов со стальными заготовками – особенности процесса

Сваривание стали с титаном позволяет снизить массу получаемых изделий. Но высокопрочных соединений добиться с помощью полуавтомата невозможно. Проблемы также могут возникнуть и при сопряжении титана с нержавейкой полуавтоматической сваркой.

Применяются следующие методы:

  • сваривание взрывом;
  • диффузионный способ;
  • клинопрессовое сваривание труб;
  • ультразвуковой;
  • контактный.

Электрошлаковая сварка

Сварка титана с нержавейкой или другими сплавами может проводиться при помощи электрошлакового сваривания. Данный метод сваривания часто применяется для сплава марки ВТ5-1, который состоит из 3 % олова и 5 % алюминия. Листы из этого сплава производится методом прессования и прокаткой в тонкие листы. А вот толстостенные конструкции не прокатывают, они подвергаются ковке.

Так как сваривают титан с толстыми стенками? Толстостенные заготовки свариваются в условиях из защитного газа аргона с применением флюса марки АН-Т2. Во время данного процесса обязательно применяют переменный ток, подача которого в область сварки производиться при помощи трехфазного трансформатора.

Важные особенности электрошлаковой сварки титана:

  • для того, чтобы сварить заготовки с толстыми стенками требуется выставить мощность тока на 1600-1800 ампер с показателем напряжения в 14-16 вольт;
  • зазор между заготовками должен составлять 2,6 см;
  • расход аргона должен составлять не больше 8 литров на 1 минуту;
  • масса засыпаемого флюса — 130 грамм;
  • при этом стоит с особой внимательностью относиться ко всем требования данного сварочного процесса, их полное соблюдение сможет обеспечить высокое качество сварочного шва;
  • электроды для сварки титана должны соответствовать по размеру диаметра. Обычно рекомендуется использовать расходники с размером диаметра в 12 мм. Если они будут иметь размер в 8 мм, то показатель прочности падает до 80 %;
  • не стоит использовать легированные и титановые электроды, они снижают показатель пластичности в сварочном соединении.

Возможные дефекты

Самым распространенным дефектом является пористость рубца, появляющаяся при поглощении расплавленным металлом воздушных пузырьков.

Чтобы минимизировать пористость следует:

  • тщательно подготовить поверхности – зачистить их и обезжирить;
  • обеспечить требуемый уровень защиты сварной зоны и ванны.

Сергей Иванов, сварщик, стаж работы – 15 лет: «Несмотря на сложность процесса, сварка титана достаточно распространена. Выполнить ее в домашних условиях сложно, но возможно. Для этого следует неукоснительно соблюдать технологию и тщательно подбирать присадочные материалы».

Защита титана при сварке

Титановые сварные соединения выполняются под защитой, которая нужна вплоть до их остывания до температуры +427 °С. Кроме этого, расплавленная сварочная ванна также должна быть под защитой, что не позволит начаться реакции взаимодействия с воздухом. Наиболее распространенными защитными газами являются аргон и гелий. Именно они предусмотрены технологиями сварки титана TIG и MIG.

Защитный газ используется сразу в нескольких направлениях:

  • Первичная защита расплавленной сварочной ванны.
  • Вторичная защита охлаждающегося расплавленного металла и околошовной зоны.
  • Защита обратной стороны сварочного шва.
  1. Первичная защита расплавленной сварочной ванны. Грамотный выбор сварочной горелки позволяет обеспечить качественную первичную защиту. Так, чтобы не нарушать технологию сварки титана аргоном TIG, понадобится горелка, оборудованная газовой линзой и большим керамическим соплом. С помощью газовой линзы инертный газ будет подаваться равномерным потоком, а сопло позволит защитить расплавленную сварочную ванну по всей площади. Аргон дает очень стабильную дугу, поэтому чаще используют именно этот газ. Если необходимо глубже проникнуть в металл или работать при более высоком напряжении, то можно использовать смесь аргона и гелия.


    Чтобы определить эффективность защитного газа и узнать его расход, можно выполнить предварительные испытания на отдельном образце из титана. Чистые защищенные сварные швы имеют яркий серебристый цвет.

  2. Вторичная защита охлаждающегося расплавленного металла и околошовной зоны. Для осуществления вторичной защиты используют специальную насадку на сварочную горелку. По-другому ее называют «сапожок». Для каждой операции сварки и для разных моделей горелки насадки могут быть разные, поэтому чаще всего их делают на заказ. Общими принципами изготовления насадки являются их компактность и наличие функции равномерного распределения газа в горелке. Кроме этого, для больших насадок может понадобиться водяное охлаждение. Если насадка оборудована бронзовым или медным диффузором, то это позволяет получать ровный поток защитного инертного газа.
  3. Защита обратной стороны сварочного шва. Для защиты корневой части шва и околошовной зоны используют специальное устройство. Обычно оно представляет собой медную подкладку с водяным охлаждением. Кроме этого, для охлаждения сварных швов могут быть использованы крупные металлические заготовки. В них сделана специальная канавка, которая должна совпадать со сварным швом. Защита с обратной стороны обычно обеспечивается потоком газа, который в два раза меньше, чем поток для первичной защиты. Желательно для каждого вида защиты (первичной, вторичной и с обратной стороны) использовать отдельный газовый редуктор. Продувка перед сваркой и после нее осуществляется с помощью электромагнитных клапанов и таймеров.
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
gmnu-nazarovo.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: