Какие металлы обладают постоянной валентностью

§ 13. Валентность химических элементов. Определение валентности в бинарных соединениях

Способность элементов проявлять то или иное значение валентности определяется строением их атомов. Поскольку строение атомов мы будем изучать позднее, научимся определять валентность, исходя из положения элементов в периодической системе (рис. 29, табл. 7).

Для этого следует учитывать, что каждая группа (вертикальный столбец) элементов состоит из двух подгрупп: главной и побочной. Рассмотрите таблицу 7. В неё внесены химические элементы, с которыми вы будете встречаться особенно часто.

Элементы-металлы, располагающиеся в главных подгруппах I и II групп, проявляют постоянную валентность, равную номеру группы. Это же относится и к алюминию (III группа). А вот металлические элементы IV группы (главная подгруппа) олово и свинец служат исключением и проявляют переменную валентность, численно равную II и IV. Для многих металлов побочных подгрупп также характерно наличие переменной валентности, однако высшее значение валентности обычно равно номеру группы!

Большая часть неметаллов, располагающихся в главных подгруппах групп с четвёртой по седьмую, проявляет переменную валентность. В ряду возможных значений валентностей неметаллов следует выделять высшую и низшую. Высшая валентность равна номеру группы, низшая — разности, полученной вычитанием числа, равного номеру группы, из числа МИ. Например: высшая валентность элемента фосфора, стоящего в V группе, равна V, низшая: VIII – V = III. Следовательно, валентность фосфора переменная — III и V.

Элементы, расположенные в группах с чётными номерами, проявляют чётные значения валентности а для элементов нечётных групп характерны нечётные значения валентности Эта характерная особенность называется правилом чётности-нечётности.

По формуле бинарного (состоящего из атомов двух элементов) соединения можно определить валентность одного из элементов, если известна валентность другого.

1. Валентность — свойство атомов присоединять определённое число других атомов.

2. В зависимости от строения атомов элементы проявляют постоянную или переменную валентность.

3. Металлы главных подгрупп проявляют постоянную валентность, равную номеру группы.

4. Валентность кислорода и водорода постоянна:

5. В случаях переменной валентности высшее её значение равно номеру группы.

6. Для определения значения низшей валентности элементов-неметаллов следует из числа VIII вычесть номер группы.

Валентность: постоянная, переменная • Правило чётности-нечётности

Вопросы и задания

1. Рассмотрите таблиц) 7. Какие металлы обладают постоянной валентностью? Какие элементы первой группы обладают переменной валентностью? Какую подгруппу они образуют?

2. Используя таблицу 7, составьте формулы кислородсодержащих соединений известных вам элементов.

3. Определите валентность химических элементов по формулам их соединений: HgO, HBr, ZnS, MgF2, CuO, АlСl3.

4. Определите валентность химических элементов в соединениях: Сl2O, NO, NO2, N2O3, SO2, SO3, Cl2O5.

5. Начертите графические формулы для молекул: аммиака NH3, воды Н2O, сернистого газа SO2.

Валентность. Определение валентности. Элементы с постоянной валентностью.

Образно говоря, валентность – это число “рук”, которыми атом цепляется за другие атомы. Естественно, никаких “рук” у атомов нет; их роль играют т. н. валентные электроны.

Можно сказать иначе: валентность – это способность атома данного элемента присоединять определенное число других атомов.

Необходимо четко усвоить следующие принципы:

Существуют элементы с постоянной валентностью (их относительно немного) и элементы с переменной валентностью (коих большинство).

Элементы с постоянной валентностью необходимо запомнить:

Читайте также:
Каким газом варить нержавейку полуавтоматом

ЭлементыПостоянная валентность
щелочные металлы (Li, Na, K, Rb , Cs, Fr) I
металлы II группы, главной подгруппы (Be, Mg, Ca, Sr, Ba, Ra) II
алюминий (Al) III
кислород (О) II
фтор (F) I

Остальные элементы могут проявлять разную валентность.

Высшая валентность элемента в большинстве случаев совпадает с номером группы, в которой находится данный элемент.

Например, марганец находится в VII группе (побочная подгруппа), высшая валентность Mn равна семи. Кремний расположен в IV группе (главная подгруппа), его высшая валентность равна четырем.

Следует помнить, однако, что высшая валентность не всегда является единственно возможной. Например, высшая валентность хлора равна семи (убедитесь в этом!), но известны соединения, в которых этот элемент проявляет валентности VI, V, IV, III, II, I.

Важно запомнить несколько исключений : максимальная (и единственная) валентность фтора равна I (а не VII), кислорода – II (а не VI), азота – IV (способность азота проявлять валентность V – популярный миф, который встречается даже в некоторых школьных учебниках).

Валентность и степень окисления – это не тождественные понятия.

Эти понятия достаточно близки, но не следует их путать! Степень окисления имеет знак (+ или -), валентность – нет; степень окисления элемента в веществе может быть равна нулю, валентность равна нулю лишь в случае, если мы имеем дело с изолированным атомом; численное значение степени окисления может НЕ совпадать с валентностью. Например, валентность азота в N 2 равна III, а степень окисления = 0. Валентность углерода в муравьиной кислоте = IV, а степень окисления = +2.

Если известна валентность одного из элементов в бинарном соединении, можно найти валентность другого.

Делается это весьма просто. Запомните формальное правило: произведение числа атомов первого элемента в молекуле на его валентность должно быть равно аналогичному произведению для второго элемента .

Пример 1 . Найти валентности всех элементов в соединении NH 3 .

Решение . Валентность водорода нам известна – она постоянна и равна I. Умножаем валентность Н на число атомов водорода в молекуле аммиака: 1 &#x2022 3 = 3. Следовательно, для азота произведение 1 (число атомов N) на X (валентность азота) также должно быть равно 3. Очевидно, что Х = 3. Ответ: N(III), H(I).

Пример 2 . Найти валентности всех элементов в молекуле Cl 2 O 5 .

Решение . У кислорода валентность постоянна (II), в молекуле данного оксида пять атомов кислорода и два атома хлора. Пусть валентность хлора = Х. Составляем уравнение: 5 &#x2022 2 = 2 &#x2022 Х. Очевидно, что Х = 5. Ответ: Cl(V), O(II).

Пример 3 . Найти валентность хлора в молекуле SCl 2 , если известно, что валентность серы равна II.

Решение . Если бы авторы задачи не сообщили нам валентность серы, решить ее было бы невозможно. И S, и Cl – элементы с переменной валентностью. С учетом дополнительной информации, решение строится по схеме примеров 1 и 2. Ответ: Cl(I).

Зная валентности двух элементов, можно составить формулу бинарного соединения.

В примерах 1 – 3 мы по формуле определяли валентность, попробуем теперь проделать обратную процедуру.

Пример 4 . Составьте формулу соединения кальция с водородом.

Решение . Валентности кальция и водорода известны – II и I соответственно. Пусть формула искомого соединения – Ca x H y . Вновь составляем известное уравнение: 2 &#x2022 x = 1 &#x2022 у. В качестве одного из решений этого уравнения можно взять x = 1, y = 2. Ответ: CaH 2 .

“А почему именно CaH 2 ? – спросите вы. – Ведь варианты Ca 2 H 4 и Ca 4 H 8 и даже Ca 10 H 20 не противоречат нашему правилу!”

Ответ прост: берите минимально возможные значения х и у. В приведенном примере эти минимальные (натуральные!) значения как раз и равны 1 и 2.

“Значит, соединения типа N 2 O 4 или C 6 H 6 невозможны? – спросите вы. – Следует заменить эти формулы на NO 2 и CH?”

Нет, возможны. Более того, N 2 O 4 и NO 2 – это совершенно разные вещества. А вот формула СН вообще не соответствует никакому реальному устойчивому веществу (в отличие от С 6 Н 6 ).

Несмотря на все сказанное, в большинстве случаев можно руководствоваться правилом: берите наименьшие значения индексов.

Пример 5 . Составьте формулу соединения серы с фтором, если известно, что валентность серы равна шести.

Решение . Пусть формула соединения – S x F y . Валентность серы дана (VI), валентность фтора постоянна (I). Вновь составляем уравнение: 6 &#x2022 x = 1 &#x2022 y. Несложно понять, что наименьшие возможные значения переменных – это 1 и 6. Ответ: SF 6 .

Вот, собственно, и все основные моменты.

А теперь проверьте себя! Предлагаю пройти небольшой тест по теме “Валентность” .

Хотите узнать, почему “классическое” определение валентности часто не “работает”? Почему валентность железа в FeO не равна двум? Почему для описания комплексных веществ используется понятие “координационное число”?

Урок 6. Валентность

В уроке 6 «Валентность» из курса «Химия для чайников» дадим определение валентности, научимся ее определять; рассмотрим элементы с постоянной и переменной валентностью, кроме того научимся составлять химические формулы по валентности. Напоминаю, что в прошлом уроке «Химическая формула» мы дали определение химическим формулам и их индексам, а также выяснили различия химических формул веществ молекулярного и немолекулярного строения.

Вы уже знаете, что в химических соединениях атомы разных элементов находятся в определенных числовых соотношениях. От чего зависят эти соотношения?

Рассмотрим химические формулы нескольких соединений водорода с атомами других элементов:

Нетрудно заметить, что атом хлора связан с одним атомом водорода, атом кислорода — с двумя, атом азота — с тремя, а атом углерода — с четырьмя атомами водорода. В то же время в молекуле углекислого газа СО2 атом углерода связан с двумя атомами кислорода. Из этих примеров видно, что атомы обладают разной способностью соединяться с другими атомами. Такая способность атомов выражается с помощью численной характеристики, называемой валентностью.

Валентность — численная характеристика способности атомов данного элемента соединяться с другими атомами.

Поскольку один атом водорода может соединиться только с одним атомом другого элемента, валентность атома водорода принята равной единице. Иначе говорят, что атом водорода обладает одной единицей валентности, т. е. он одновалентен.

Валентность атома какого-либо другого элемента равна числу соединившихся с ним атомов водорода. Поэтому в молекуле HCl у атома хлора валентность равна единице, а в молекуле H2O у атома кислорода валентность равна двум. По той же причине в молекуле NH3 валентность атома азота равна трем, а в молекуле CH4 валентность атома углерода равна четырем. Если условно обозначить единицу валентности черточкой |, вышесказанное можно изобразить схематически:

Следовательно, валентность атома любого элемента есть число, которое показывает, со сколькими атомами одновалентного элемента связан данный атом в химическом соединении.

Численные значения валентности обозначают римскими цифрами над символами химических элементов:

Определение валентности

Однако водород образует соединения далеко не со всеми элементами, а вот кислородные соединения есть почти у всех элементов. И во всех таких соединениях атомы кислорода проявляют валентность, равную двум. Зная это, можно определять валентности атомов других элементов в их бинарных соединениях с кислородом. (Бинарными называются соединения, состоящие из атомов двух химических элементов.)

Чтобы это сделать, необходимо соблюдать простое правило: в химической формуле вещества суммарные числа единиц валентности атомов каждого элемента должны быть одинаковыми.

Так, в молекуле воды H2O общее число единиц валентности двух атомов водорода равно произведению валентности одного атома на соответствующий числовой индекс в формуле:

Так же определяют число единиц валентности атома кислорода:

По величине валентности атомов одного элемента можно определить валентность атомов другого элемента. Например, определим валентность атома углерода в молекуле углекислого газа СО2:

Согласно вышеприведенному правилу х ·1 = II · 2 , откуда х = IV .

Существует и другое соединение углерода с кислородом — угарный газ СО, в молекуле которого атом углерода соединен только с одним атомом кислорода:

В этом веществе валентность углерода равна II , так как х ·1 = II · 1 , откуда х = II :

Постоянная и переменная валентность

Как видим, углерод соединяется с разным числом атомов кислорода, т. е. имеет переменную валентность. У большинства элементов валентность — величина переменная. Только у водорода, кислорода и еще нескольких элементов она постоянна (см. таблицу).

Составление химических формул по валентности

Зная валентность элементов, можно составлять формулы их бинарных соединений. Например, необходимо записать формулу кислородного соединения хлора, в котором валентность хлора равна семи. Порядок действий здесь таков.

Еще один пример. Составим формулу соединения кремния с азотом, если валентность кремния равна IV , а азота — III .

Записываем рядом символы элементов в следующем виде:

Затем находим НОК валентностей обоих элементов. Оно равно 12 ( IV·III ).

Определяем индексы каждого элемента:

Записываем формулу соединения: Si3N4.

В дальнейшем при составлении формул веществ не обязательно указывать цифрами значения валентностей, а необходимые несложные вычисления можно выполнять в уме.

Краткие выводы урока:

  1. Численной характеристикой способности атомов данного элемента соединяться с другими атомами является валентность.
  2. Валентность водорода постоянна и равна единице. Валентность кислорода также постоянна и равна двум.
  3. Валентность большинства остальных элементов не является постоянной. Ее можно определить по формулам их бинарных соединений с водородом или кислородом.

Надеюсь урок 6 «Валентность» был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.

Валентность

Валентность — это способность атомов химических элементов образовывать определенное число химических связей с атомами других химических элементов.

Ковалентные связи могут образовываться по обменному и донорно-акцепторному механизмам .

Обменный механизм образования ковалентной связи — в образовании связи участвуют одноэлектронные атомные орбитали, т.е. каждый из атомов предоставляет по одному неспаренному электрону.

Донорно-акцепторный механизм — образование связи происходит за счет электронной пары одного из атомов (атом-донор) и вакантной орбитали другого атома (атом-акцептор):

Таким образом, атомы могут образовывать химическую связь не только за счет неспаренных электронов на внешнем энергетическом уровне, но и за счет неподеленных электронных пар, или свободных орбиталей на этом уровне.

Большинство элементов характеризуются высшей, низшей или промежуточной валентностью в соединениях.

Для большинства элементов высшая валентность, как правило, равна номеру группы, низшая валентность определяется по формуле: 8 — № группы. Промежуточная валентность – это число между низшей и высшей валентностями.

Например , высшая валентность хлора равна VII, низшая валентность хлора равна I, промежуточные валентности — III, V.

Обратите внимание! Степень окисления и валентность — это не одно и то же. Хотя иногда степени окисления совпадают с валентностями. Стпень окисления — это условный заряд атома, он может быть и положительным и отрицательным. А вот образовать отрицательное число связей атом никак не может.

Например , валентность (число связей) атома кислорода в молекуле O2 равна II, а вот степень окисления атома кислорода равна 0.

Большинство элементов проявляют переменную валентность в соединениях, но некоторые элементы проявляют постоянную валентность . Их необходимо запомнить:

Элемент Валентность
Фтор F I
Кислород О II
Металлы IA группы (Li, Na, K, Rb, Cs, Fr) I
Металлы IIA группы (Be, Mg, Ca, Sr, Ba, Ra) II
Алюминий Al III

Как определить валентность атома в соединении?

Рассмотрим валентные возможности атомов второго периода. В силу некоторых ограничений они не соответствуют традиционным «школьным» представлениям.

Итак, не внешнем энергетическом уровне лития 1 неспаренный электрон: 1s 2 2s 1 .

+3Li 1s 2 2s 1

Следовательно, литий может образовывать одну связь и валентность лития I.

У бериллия на внешнем энергетическом уровне 2 электрона: 1s 2 2s 2 .

+4Be 1s 2 2s 2

В возбужденном состоянии возможен переход электронов внешнего энергетического уровня с одного подуровня на другой: 1s 2 2s 1 2p 1 .

+4Be * 1s 2 2s 1 2p 1

Таким образом, на внешнем э нергетическом уровне бериллия в возбужденном энергетическом состоянии есть 2 неспаренных электрона и две вакантные электронные орбитали. Следовательно, бериллий может образовать 2 связи по обменному механизму, т.е. валентность бериллия равна номеру группы и равна II.

Например , в хлориде бериллия валентность бериллия равна II:

Электронная конфигурация атома бора в основном состоянии +5B 1s 2 2s 2 2p 1 :

+5B 1s 2 2s 2 2p 1

В возбужденном состоянии: +5B * 1s 2 2s 1 2p 2 .

+5B 1s 2 2s 1 2p 2

Следовательно, бор может образовывать 3 связи по обменному механизму (за счет неспаренных электронов). Валентность бора в соединениях — III.

Например , в трихлориде бора BCl3 валентность бора равна III.

Однако, при этом у бора остается еще одна вакантная электронная орбиталь. Следовательно, бор может выступать, как акцептор электронной пары.

У атома углерода в возбужденном состоянии на внешнем энергетическом уровне 4 неспаренных электрона: 1s 2 2s 1 2p 3 , следовательно, максимальная валентность углерода равна IV (как правило, в органических соединениях у углерода именно такая валентность). В основном состоянии у атома углерода 2 неспаренных электрона, и валентность II. Однако посмотрим внимательно: у атома углерода в основном состоянии не внешнем энергетическом уровне есть незанятая (вакантная) электронная орбиталь. Следовательно, он может образовывать еще одну связь — по донорно-акцепторному механизму. Таким образом, в некоторых случаях углерод может образовывать три связи ( например , молекула угарного газа CO, строение которой мы рассмотрим позднее).

Валентные возможности атома азота определяются также строением его внешнего энергетического уровня. В основном состоянии электронная формула азота: +7N 1s 2 2s 2 2p 3 .

За счет 3 неспаренных электронов на p-подуровне азот может образовывать 3 связи по обменному механизму (валентность III), и еще 1 связь азот может образовать по донорно-акцепторному механизму за счет неподеленной электронной пары. Таким образом, максимальная валентность азота в соединениях — IV. На примере азота можно убедиться, что высшая валентность атома и максимальная степень окисления — разные величины, которые далеко не всегда совпадают. Возбужденное состояние с 5 неспаренными электронами для атома азота не реализуется, т.к. на 2 энергетическом уровне есть только s и p орбитали.

Какие металлы обладают постоянной валентностью

FOR-DLE.ru – Всё для твоего DLE ;)
Привет, я Стас ! Я занимаюсь так называемой “вёрсткой” шаблонов под DataLife Engine.

На своем сайте я выкладываю уникальные, адаптивные, и качественные шаблоны. Все шаблоны проверяются на всех самых популярных браузерх.
Раньше я занимался простой вёрсткой одностраничных, новостных и т.п. шаблонов на HTML, Bootstrap. Однажды увидев сайты на DLE решил склеить пару шаблонов и выложить их в интернет. В итоге эта парочка шаблонов набрала неплохую популярность и хорошие отзывы, и я решил создать отдельный проект.
Кроме шаблонов я так же буду выкладывать полезную информацию для DataLife Engin и “статейки” для веб мастеров. Так же данный проект будет очень полезен для новичков и для тех, кто хочет правильно содержать свой сайт на DataLife Engine. Надеюсь моя работа вам понравится и вы поддержите этот проект. Как легко и удобно следить за обновлениями на сайте?
Достаточно просто зарегистрироваться на сайте, и уведомления о каждой новой публикации будут приходить на вашу электронную почту!

Задание 2 Используя таблицу 7, составьте формулы кислородсодержащих соединений известных вам элементов.
І группа: H2O, Li2O, Na2O, K2O, Rb2O, Cs2O
ІІ группа: BeO, MgO, CaO
ІІI группа: B2O3, Al2O3
ІV группа: CO2, SiO2, SnO2, PbO2
V группа: N2O5, P2O5, As2O5
VІ группа: SO3, SeO3, TeO3
VIІ группа: Cl2O7, Br2O7, I2O7
Объяснение: воспользуйтесь общими формулами высших оксидов, располагающиеся в нижней строке таблицы 7.

Задание 3 Определите валентность химических элементов по формулам их соединений: HgO, HBr, ZnS, MgF2, CuO, AlCl3.
Ответ: Hg II O II , H I Br I , Zn II S II , Mg II F2 I , Cu II O II , Al III Cl3 I
Объяснение.
Соединение HgO. Постоянное значение валентности киcлорода II. Вычисляем валентность всех атомов кислорода (1•2=2) и делим валентность всех атомов кислорода на число атомов ртути (2:1=2). Валентность ртути ― II
Соединение HBr. Постоянное значение валентности водорода I. Вычисляем валентность всех атомов водорода (1•1=1) и делим валентность всех атомов водорода на число атомов брома (1:1=1). Валентность брома ― I
Соединение ZnS. Высшее з начение валентности цинка II. Вычисляем валентность всех атомов цинка (1•2=2) и делим валентность всех атомов цинка на число атомов серы (2:1=2). Валентность серы ― II
Соединение MgF2. Постоянное значение валентности алюминия II I и фтора I
Соединение Cu O . Постоянное значение валентности кислорода II. Вычисляем валентность всех атомов кислорода (1•2=2) и делим валентность всех атомов кислорода на число атомов меди (2:1=2). Валентность меди ― II
Соединение AlCl3. Постоянное значение валентности алюминия II I . Вычисляем валентность всех атомов алюминия (1•3=3) и делим валентность всех атомов алюминия на число атомов хлора (3:3=1). Валентность хлора ― I

Задание 4 Определите валентность химических элементов в соединениях: Cl2O, NO, NO2, N2O3, SO2, SO3, Cl2O5.
Ответ: Cl2 I O II , N II O II , N IV O2 II , N2 III O3 II , S IV O2 II , S VI O3 II , Cl2 V O5 II
Объяснение.
Соединение Сl2O. Постоянное значение валентности киcлорода II. Вычисляем валентность всех атомов кислорода (1•2=2) и делим валентность всех атомов кислорода на число атомов хлора (2:2=1). Валентность хлора ― I
Соединение NO. Постоянное значение валентности киcлорода II. Вычисляем валентность всех атомов кислорода (1•2=2) и делим валентность всех атомов кислорода на число атомов азота (2:1=2). Валентность азота ― II
Соединение NO2. Постоянное значение валентности киcлорода II. Вычисляем валентность всех атомов кислорода (2•2=4) и делим валентность всех атомов кислорода на число атомов азота (4:1=4). Валентность азота ― IV
Соединение N2O3. Постоянное значение валентности киcлорода II. Вычисляем валентность всех атомов кислорода (3•2=6) и делим валентность всех атомов кислорода на число атомов азота (6:2=3). Валентность азота ― III
Соединение SO2. Постоянное значение валентности киcлорода II. Вычисляем валентность всех атомов кислорода (2•2=4) и делим валентность всех атомов кислорода на число атомов cеры (4:1=4). Валентность серы ― IV
Соединение SO3. Постоянное значение валентности киcлорода II. Вычисляем валентность всех атомов кислорода (3•2=6) и делим валентность всех атомов кислорода на число атомов cеры (6:1=6). Валентность серы ― V I
Соединение Сl2O5. Постоянное значение валентности киcлорода II. Вычисляем валентность всех атомов кислорода (5•2=10) и делим валентность всех атомов кислорода на число атомов хлора (10:2=5). Валентность хлора ― V

Задание 5 Начертите графические формулы для молекул: аммиака NH3, воды H2O, сернистого газа SO2.

Валентность и степень окисления

Валентность

Валентность (лат. valere – иметь значение) – мера “соединительной способности” химического элемента, равная числу индивидуальных химических связей, которые может образовать один атом.

Определяют валентность по числу связей, которые один атом образует с другими. Для примера рассмотрим две молекулы

Для определения валентности нужно хорошо представлять графические формулы веществ. В этой статье вы увидите множество формул. Сообщаю вам также о химических элементах с постоянной валентностью, знать которые весьма полезно.

В электронной теории считается, что валентность связи определяется числом неспаренных (валентных) электронов в основном или возбужденном состоянии. Мы касались с вами темы валентных электронов и возбужденного состояния атома. На примере фосфора объединим эти две темы для полного понимания.

Подавляющее большинство химических элементов обладает непостоянным значением валентности. Переменная валентность характерна для меди, железа, фосфора, хрома, серы.

Ниже вы увидите элементы с переменной валентностью и их соединения. Заметьте, определить их непостоянную валентность нам помогают другие элементы – с постоянной валентностью.

Запомните, что у некоторых простых веществ валентность принимает значения: III – у азота, II – кислорода. Подведем итог полученным знаниям, написав графические формулы азота, кислорода, углекислого и угарного газов, карбоната натрия, фосфата лития, сульфата железа (II) и ацетата калия.

Как вы заметили, валентности обозначаются римскими цифрами: I, II, III и т.д. На представленных формулах валентности веществ равны:

  • N – III
  • O – II
  • H, Na, K, Li – I
  • S – VI
  • C – II (в угарном газе CO), IV (в углекислом газе CO2 и карбонате натрия Na2CO3
  • Fe – II
Степень окисления

Степенью окисления (СО) называют условный показатель, который характеризует заряд атома в соединении и его поведение в ОВР (окислительно-восстановительной реакции). В простых веществах СО всегда равна нулю, в сложных – ее определяют исходя из постоянных степеней окисления у некоторых элементов.

Численно степень окисления равна условному заряду, который можно приписать атому, руководствуясь предположением, что все электроны, образующие связи, перешли к более электроотрицательному элементу.

Определяя степень окисления, одним элементам мы приписываем условный заряд “+”, а другим “-“. Это связано с электроотрицательностью – способностью атома притягивать к себе электроны. Знак “+” означает недостаток электронов, а “-” – их избыток. Повторюсь, СО – условное понятие.

Сумма всех степеней окисления в молекуле равна нулю – это важно помнить для самопроверки.

Зная изменения электроотрицательности в периодах и группах периодической таблицы Д.И. Менделеева, можно сделать вывод о том какой элемент принимает “+”, а какой минус. Помогают в этом вопросе и элементы с постоянной степенью окисления.

Кто более электроотрицательный, тот сильнее притягивает к себе электроны и “уходит в минус”. Кто отдает свои электроны и испытывает их недостаток – получает знак “+”.

Самостоятельно определите степени окисления атомов в следующих веществах: RbOH, NaCl, BaO, NaClO3, SO2Cl2, KMnO4, Li2SO3, O2, NaH2PO4. Ниже вы найдете решение этой задачи.

Сравнивайте значение электроотрицательности по таблице Менделеева, и, конечно, пользуйтесь интуицией :) Однако по мере изучения химии, точное знание степеней окисления должно заменить даже самую развитую интуицию ;-)

Особо хочу выделить тему ионов. Ион – атом, или группа атомов, которые за счет потери или приобретения одного или нескольких электронов приобрел(и) положительный или отрицательный заряд.

Определяя СО атомов в ионе, не следует стремиться привести общий заряд иона к “0”, как в молекуле. Ионы даны в таблице растворимости, они имеют разные заряды – к такому заряду и нужно в сумме привести ион. Объясню на примере.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Блиц-опрос по теме Валентность и степень окисления

Химия

Именная карта банка для детей
с крутым дизайном, +200 бонусов

Закажи свою собственную карту банка и получи бонусы

План урока:

Валентность

Представьте на минуточку, что атомы не могли бы соединяться между собой, какой вид имела бы планета, а вопрос: «Существовала ли вообще Солнечная система?» Именно благодаря тому, что атомы соединяются между собой, существуют вещества, а также и мы.

Вернёмся к деталям, мы их будем сравнивать с атомами, а их внешний вид, с количеством связей, которые они могут образовать.

Представим, что в нашем распоряжении есть вот такие детали.

Валентность элементов обусловлена количеством неспаренных электронов на внешнем уровне.

Рассмотрим металлы, расположенные в I группе. Их объединили в одно семейство щелочных металлов, поскольку реагируя с водою, они все образуют щёлочи, состава МеОН. Формула внешнего уровня имеет вид ns 1 . Если провести параллель с элементами конструктора, то они будут выглядеть следующим образом.

Они могут отличаться цветом, формой, однако их объединяет количество связей, которые они способны образовать. Иначе говоря, что щелочные металлы одновалентны.

Это правило срабатывает и для элементов II группы, только они будут иметь вид двойных деталей.

Вспоминаем, что элементы этой группы имеют формулу ns 2 , приходим к тому, что валентность атомов численно равна II.

Как возможно Вы заметили, или вспомнили с темы строение атома, что высшая валентность определяется номером группы, но не всегда ей равна. Исключением с данного правила являются атомы элементов таких как азот, фтор и кислород.

Почему фтор, находясь в VII группе, имеет валентность постоянную равную единице. В то время, для других его родственников, она будет равнять I, III, V или даже VII.

Поиграем с Вами в старую добрую игру «Найди … отличий». Несмотря на то, что они находятся в одной группе, имеют общую формулу внешнего слоя ns 2 np 5 , валентность их будет отличаться. Атомы хлора выигрывают за счёт свободного 3d уровня, на который при определённых условиях могут мигрировать электроны с наружного слоя, образуя при этом 3 возбуждённых состояния. Атом фтора в этом плане бедный, в распоряжении его электронов нет d-орбитали, его электронам некуда мигрировать.Поэтому имея только 1 неспаренный электрон, может образовать только единственную связь.

Причины постоянной и переменной валентности

Для большинства элементов характерно иметь переменную валентность. Но для некоторых она будет постоянной. Некоторые элементы Вам уже известны, пополнит этот список кислород и цинк, которые всегда двухвалентны, алюминий имеет число связей III.

Расположение элементов в периодической таблице подсказывает, о количестве связей, которые могут они образовать.

Определение валентности элементов по формулам

На рисунке изображены молекулы известных Вам веществ: это аммиак NH3, запах этого газа очень резкий и его трудно забыть, если хоть раз ощущали запах нашатырного спирта, с помощью его приводят людей в чувство после обморока.

С молекулой метана СН4 Вы встречаетесь на кухне, когда открываете газовый кран, чтобы приготовить пищу. На самом деле, метан не имеет запаха, но поскольку он относится к взрывоопасным веществам, то к нему прибавляют специальные соединения, имеющие запах, чтобы в случае утечки, его можно было обнаружить.

Молекула Н2О окружает нас повсюду. Во всех этих соединениях имеются атомы водорода, только в разных количествах. Давайте попробуем определить валентность по формуле вещества. Вспомним, что водород одновалентен. Если в аммиаке водорода насчитываем 3 атома, значит азот, условно, можем изобразить в виде такой детали.

Как видно с рисунка, он имеет валентность III. Поэтому принципу определим валентность углерода, приходим к выводу, что он четырёхвалентен.

Но не всегда мы видим структурные формулы, которые отображают связи между атомами, и не всегда имеем дело с одновалентными элементами. Возьмём, к примеру, вещество состава Р2О5. На два атома фосфора приходится 5 атомов кислорода. Постоянную валентность имеет кислород, которая равняется II. Чтобы определить, какую валентность будет иметь фосфор, необходимо выполнить следующие математические действия.

Встречаются такие соединения, где необходимо определить валентность остатков, входящих в состав кислот. Например, вещество состава Mg3(PO4)2.

Выполним согласно алгоритму. Магний всегда двухвалентен.

Искомая валентность кислотного остатка равна III. Следует заметить, что в веществе всегда находиться элемент, который проявляет постоянную валентность.

При написании уравнений реакций возникает необходимость составления формул веществ. Рассмотрим реакцию обмена между оксидом алюминия и соляной кислотой.

В результате обмена образуется два вещества состава AlCl и НО. Чтобы определить количественный состав в веществах, воспользуемся следующим алгоритмом.

Составление химических формул по валентности

Уравнение приобретает вид

Обратите внимание, что количество атомов отличается в реагентах и продуктах, его необходимо уравнять.

Составим формулы веществ по валентности элементов.

Немаловажную роль наравне с валентностью играет такое понятие как степень окисления (СО).

Термин валентность применим для соединений, имеющих молекулярное строение. Но, как известно, ещё существуют вещества ионного строения, которые образуются за счёт электростатического притяжения между разноимёнными зарядами. Каким образом они образуются? Чтобы ответить на данный вопрос, вспомним об электроотрицательности.

При образовании вещества, одни атомы будут отдавать свои электроны, другие – принимать. Рассмотрим на примере соединений молекулярного строения Cl2, HCl и ионного NaCl.

Обратите внимание, что вещества молекулярного строения, имеют структурную формулу, соединение атомов между собой показывается в виде черты – между ними. Для веществ имеющих строение, отличающее от молекулярного, более применимо понятие степени окисления, которое имеет универсальное применение для всех типов веществ.

Каким образом получается молекула вещества HCl? У водорода имеется один-единственный электрон, который располагается на 1s уровне, у хлора целых 7, занимающих уровни 3s 2 и 3р 5 . Как Вы считаете, какой атом будет отдавать, а какой принимать электроны? При всём своём желании, атом водорода никак не сможет принять электроны хлора, ему просто некуда. Как он сможет расположить в своей 1s ячейке целых 7 электронов хлора. Логично предположить, что принимать будет хлор. Ему как раз не хватает одного электрона, чтобы завершить свой уровень. Поэтому водород будет иметь заряд +, а хлор -. Степень окисления указывается в правом верхнем углу элемента, арабскими цифрами, знак + или – ставим перед цифрой H + Cl − .

А вот какую степень окисления имеет простое вещество. Атомы равноценные партнёры, поэтому она будет нулевая.

При образовании ионного соединения NaCl натрий, как элемент имеющий малое число электронов на внешнем слое, а именно 1, подобно водороду, отдаёт его хлору, образуя при этом катион Na + , хлор при этом становится отрицательным анионом Cl − .

Правила определения степени окисления

Подобно валентности, для определённых элементов свойственна постоянная степень окисления. Это металлы, которые отличаются малым количеством электронов внешнего слоя. Отличительной характеристикой их будет невозможность иметь отрицательный заряд, поскольку они ВСЕГДА отдают электроны.

В противовес металлам существует один-единственный элемент, который абсолютно ни с кем не хочет делиться своими электронами.Ни при каких условиях он не отдаст их, это фтор, который всегда отрицателен F − .

Такой элемент, как кислород, обычно имеет отрицательный заряд, это -2. И только с фтором, он будет положительным +2.

Аналогичная ситуация с водородом, характерная СО (степень окисления) +1, однако исключения составляют соединения с металлами, где его степень окисления будет отрицательная и равняется -1.

Все эти значения вытекают с периодической системы, которая помогает определить степени окисления элементов.

С таблицы видно, что для большинства элементов эта величина не постоянная.

Чтобы вычислить степень окисления элементов в соединениях, будем руководствоваться следующими правилами.

Как бы то ни было, природа не ограничивается бинарными соединениями. Существует множество веществ состоящих из 2 и более элемента. Впрочем вычисление совсем не отличается, первоначально определяем элементы, имеющие постоянную степень окисления, а дальше проделав нехитрые математические действия находим СО для остальных. Главное правило, чтобы вещество было нейтральным, количество плюсов должно равняться количеству минусов.

К примеру, в веществе H2SO3 самым электроотрицательным является кислород, он заберёт электроны как в водороде, так и в серы, вследствие этого имеет отрицательную СО, а Hи Sстанут положительными. В этом соединение имеются 2 элемента, имеющих известную СО – это Н и О.

Обратите внимание, на нахождение СО в кислотном остатке. В данном случае, мы приравниваем не к 0, а к заряду аниона.

Здесь у серы х внизу

Как правило, валентность и степень окисления совпадают по абсолютной величине. Но исключения составляют простые вещества, например, в простом веществе азот, формула которого N2, степень окисления равняется 0, в тоже время, валентность атомов азота равна III. N 0 ≡ N 0 .

Либо в катионе аммония NH4 + . Азот имеет СО -3, а валентность IV.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
gmnu-nazarovo.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: