Модуль сдвига меди

Механические свойства сплавов цветных металлов

Основные характеристики механических свойств сплавов цветных металлов

  • E – модуль упругости – коэффициент пропорциональности между нормальным напряжением и относительным удлинением;
  • G – модуль сдвига (модуль касательной упругусти) – коэффициент пропорциональности между касательным напряжением и относительным сдвигом;
  • μ – коэффициент Пуассона – абсолютное значение отношения поперечной деформации к продолной в упругой области;
  • σт – предел текучести (условный) – напряжение при котором остаточная деформация после снятия нагрузки составляет 0,2%;
  • σв – временное сопротивление (предел прочности) – прочность на разрыв;
  • δ – относительное удлинение – отношение абсолютного остаточного удлинения образца после разрыва к начальной расчётной длине;
  • твёрдость (HB, HRC, HV).

Механический свойства алюминиевых сплавов

Для обозначения состояний деформируемых сплавов приняты следующие обозначения: М – мягкий, отожжённый; П – полунагартованный; Н – нагартованный; Т – закалённый и естественно состаренный; Т1 – закалённый и искусственно состаренный на высокую прочность; Т2 – закалённый и искусственно состаренный по режиму, обеспечивающему по сравнению с режимом Т1 более высокие значения вязкости разрешения и сопротивления коррозии под напряжением; Т3 – аналогично Т2 с улучшенными свойствами. Буква “ч” в обозначении марки сплава указывает на повышенную чистоту сплава (по содержанию примесей). Деформируемые алюминиевые сплавы подразделяются на не упрочняемые и упрочняемые термической обработкой.

Механические свойства алюминиевых деформируемых сплавов

E = 70. 72 ГПа, G = 27. 28 ГПа, коэффициент Пуассона μ = 0,31. 0,33.

Система легирования Сплав, состояние Полуфабрикат Предел прочности σв, МПа Предел текучести σт, МПа Твёрдость HB, МПа
Al – Mg АМг5М Пруток, штамповка 300 160 HB 650
Al – Mg АМг6М Поковка 300 150
Al – Mg АМг6Н Лист 400 300
Al – Cu Д16 и Д16П Лист 440 290
Al – Cu Д16 и Д16П Профили 420-500 400-440

Механические свойства титановых сплавов

Титан имеет следующие преимущества по сравнению с другими конструкционными металлами: малый удельный вес, высокие механические свойства в широком диапазоне температур, отсутствие хладноломкости и хорошую коррозионную стойкость. Прочностные и пластические свойства нелегированного титана определяются содержанием в нём примесей кислорода, азота и в меньшей степени углерода, железа и кремния. Особо прочный титан имеет предел прочности 251 МПа, предел текучести 104 МПа, относительное удлинение 72% (на расчетной длине 13 мм) при поперечном сужении 86,2%. По структуре титановые сплавы можно разделить на четыре группы. 1) Сплавы с α-структурой, к которым относится технический титан и сплавы на его основе системы титан – алюминий. Кроме алюминия эти сплавы могут содержать нейтральные элементы, такие как, олово и цирконий. Достоинствами этих титановых сплавов является их отличная свариваемость плавлением, хорошая пластичность и высокая прочность при криогенных температурах. 2) Двухфазные сплавы с преобладанием α-структуры, содержащие примерно 2% элементов из группы β-стабилизаторов; данные сплавы имеют более высокую технологическую пластичность. 3) Двухфазные сплавы, содержащие более 2% β-стабилизаторов, обладают хорошей пластичностью после отжига или закалки и высокой прочностью после закалки и старения. Свариваются хуже, чем сплавы первых двух групп, после сварки необходим отжиг, который можно совместить с режимом старения. Эти титановые сплавы имеют более высокую прочность при комнатной и повышенных температурах, чем сплавы первых двух групп. 4) Сплавы с преобладанием β-структуры благодаря кубической решётке очень пластичны при комнатной температуре, мало уступая техническому титану. Другим преимуществом сплавов этой группы является возможность достижения чрезвычайно высокого уровня прочности путём термической обработки.

E = 110. 120 ГПа, G = 42. 45 ГПа, коэффициент Пуассона μ = 0,31. 0,34.

Система легирования Сплав Полуфабрикат Предел прочности σв, МПа Предел текучести σт, МПа
ВТ1-1 99,04% Ti Сплав малой прочности после отжига. 450-600 380-500
Ti – Al ВТ5 Среднепрочный сплав после отжига. 750-950 650-700
Ti – Al – V ВТ6 Высокопрочный сплав после закалки и старения. 1150 1050

Механический свойства медных сплавов

Медные сплавы разделяются на две основные группы: латуни и бронзы.
Латуни – сплавы, легированные цинком. Различают простые и специальные латуни. Простые латуни (двойные сплавы) маркируют буквой Л, за которой следует содержание меди в процентах. В обозначении специальных латуней после буквы Л следуют заглавные буквы легирующих элементов и содержание меди в процентах, затем через тире – процентное содержание каждого легирующего элемента.
Бронзы – сплавы, легированные различными элементами за исключением цинка. Маркируют бронзы буквой Бр, в остальном повторяется система маркировки латуней. Сплавы, в которых основным легирующим элементом является никель, именуются медно-никелевыми и имеют специальные названия. Деформируемые медные сплавы поставляются в мягком (отожженном и закаленном), полутвердом (обжатие 10-30%), твердом (обжатие 30-50%) и особо твердом (обжатие более 60%) состояниях.
Сплавы на основе олова или свинца – баббиты, маркируются буквой Б, за которой следует цифра, обозначающая содержание олова в сплаве.

Читайте также:
Моделизм своими руками

Модуль сдвига

В материаловедении модулем сдвига (обозначается буквой G или μ), называется отношение касательного напряжения к сдвиговой деформации

— касательное напряжение; — действующая сила; — площадь, на которую действует сила; — сдвиговая деформация; — смещение; — начальная длина.

Модуль сдвига измеряется в ГПа (гигапаскалях).

Материал Значение
модуля сдвига (ГПа)
(при комнатной температуре)
Алмаз 478.
Сталь [1] 79.3
Медь [1] 44.7
Титан 41.4
Стекло 26.2
Алюминий [1] 25.5
Полиэтилен 0.117
Резина 0.0006

Модуль сдвига — одна из нескольких величин, характеризующих упругие свойства материала. Все они возникают в обобщённом законе Гука:

  • Модуль Юнга описывает поведение материала при одноосном растяжении,
  • Объёмный модуль упругости описывает поведение материала при всестороннем сжатии,
  • модуль сдвига описывает отклик материала на сдвиговую нагрузку.

Модуль сдвига связан с модулем Юнга через коэффициент Пуассона:

где – значение коэффициента Пуассона для данного материала.

Волны

В однородных изотропных средах, существует два типа упругих волн: продольные волны и поперечные волны. Скорости продольной и поперечной волн зависят от модуля сдвига:

G – модуль сдвига – коэффициент Пуассона – плотность материала.

См. также

Ссылки

  1. 123Беляев Н.М. Сопротивление материалов.. — Москва: Наука, 1965.

Модуль объёмной упругости () | Модуль Юнга () | Параметры Ламе () | Модуль сдвига () | Коэффициент Пуассона () | en:P-wave modulus ()

Wikimedia Foundation . 2010 .

  • Модуль видеоввода
  • Модуль стока

Полезное

Смотреть что такое “Модуль сдвига” в других словарях:

Модуль сдвига — характеристика деформируемости, определяемая отношением интенсивности касательных напряжений к интенсивности деформаций сдвига. Остальные термины, используемые в настоящем стандарте, приведены в ГОСТ 25100. Источник: ГОСТ 30416 96: Грунты.… … Словарь-справочник терминов нормативно-технической документации

Модуль сдвига — – характеристика сопротивления материала изменению его формы при сохранении объема, численно равная отношению касательного напряжения, возникающего при чистом сдвиге, к соответствующей ему упругой деформации сдвига. [ГОСТ 23404 86] Модуль… … Энциклопедия терминов, определений и пояснений строительных материалов

модуль сдвига — Модуль 2., характеризующий сопротивление упругого материала деформациям сдвига [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Тематики строительная механика, сопротивление материалов EN shear modulus DE… … Справочник технического переводчика

МОДУЛЬ СДВИГА G — определяет способность тел (г. п., м лов) сопротивляться изменению формы при сохранении их объема; равен отношению касательного напряжения t к величине угла сдвига v, определяющего искажение прямого угла между плоскостями, по которым действует… … Геологическая энциклопедия

Модуль сдвига (G) — Shear modulus Модуль сдвига (G). Отношение касательного напряжения к соответствующей деформации сдвига для касательных напряжений, меньших предела пропорциональности материала. Значения модуля сдвига обычно определяются испытанием на кручение.… … Словарь металлургических терминов

модуль сдвига — šlyties modulis statusas T sritis Standartizacija ir metrologija apibrėžtis Liestinio įtempio ir santykinės šlyjamosios deformacijos dalmuo, t. y. G = τ/γ ; čia τ – liestinis įtempis, γ – santykinė šlyjamoji deformacija. atitikmenys: angl.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

модуль сдвига — šlyties modulis statusas T sritis fizika atitikmenys: angl. modulus of rigidity; shear modulus vok. Gleitmodul, m; Schermodul, m; Schubmodul, m rus. модуль сдвига, m pranc. module de cisaillement, m; module de rigidité, m; module d’élasticité au… … Fizikos terminų žodynas

МОДУЛЬ СДВИГА — модуль 2., характеризующий сопротивление упругого материала деформациям сдвига (Болгарский язык; Български) модул на хлъзгане (Чешский язык; Čeština) modul pružnosti ve smyku (Немецкий язык; Deutsch) Schubmodul (Венгерский язык; Magyar) csúszási… … Строительный словарь

расчетное значение жесткости (модуль упругости или модуль сдвига) при пожаре — Sd,fi — [Англо русский словарь по проектированию строительных конструкций. МНТКС, Москва, 2011] Тематики строительные конструкции Синонимы Sd,fi EN design stiffness property (modulus of elasticity of shear modulus) in the fire situation … Справочник технического переводчика

динамический модуль сдвига при постоянной намагниченности — Отношение комплекса сдвигового механического напряжения к комплексу относительной деформации сдвига, вызывающей эти напряжения в образце из магнитного материала при постоянной намагниченности. Примечание При этом одна из величин механическое… … Справочник технического переводчика

шпоргалка / подготовка к ЭКЗАМЕНУ / 46.Основные механические свойства. Модуль сдвига

Отношение напряжения сдвига к деформации сдвига

Модуль сдвига
Общие символы G , S
Единица СИ паскаль
Производные от других величин G
= /
G
= / 2 (1+ )

Деформация сдвига
В науке материалов , модуль сдвига

или
модулем жесткости
, обозначаемой
G
, или иногда
S
или
М
, является мерой упругого сдвига жесткости материала и определяется как отношение напряжения сдвига к сдвиговой деформации : [1]
грамм знак равно d е ж τ Икс y γ Икс y знак равно F / А Δ Икс / л знак равно F л А Δ Икс ><=>> >>>=>=>>
куда

Читайте также:
Микродуговое оксидирование алюминия в домашних условиях

τ x y = F / A =F/A,> = напряжение сдвига F это сила, которая действует A это область, на которую действует сила γ x y > = деформация сдвига. В машиностроении , в другом := Δ x / l = tan ⁡ θ := θ Δ x поперечное смещение l начальная длина

Производной единицей модуля сдвига в системе является паскаль (Па), хотя обычно он выражается в гигапаскалях (ГПа) или тысячах фунтов на квадратный дюйм (ksi). Ее мерная форма есть М 1 л -1 Т -2 , заменив силы

на
массовые
времена
ускорения
.

Объяснение [ править ]

Материал Типичные значения модуля сдвига (ГПа) (при комнатной температуре)
Бриллиант [2] 478,0
Сталь [3] 79,3
Утюг [4] 52,5
Медь [5] 44,7
Титан [3] 41,4
Стекло [3] 26,2
Алюминий [3] 25,5
Полиэтилен [3] 0,117
Резина [6] 0,0006
Гранит [7] [8] 24
Сланец [7] [8] 1.6
Известняк [7] [8] 24
Мел [7] [8] 3,2
Песчаник [7] [8] 0,4
Дерево 4

Модуль сдвига — это одна из нескольких величин для измерения жесткости материалов. Все они возникают в обобщенном законе Гука :

  • Модуль Юнга E
    описывает реакцию деформации материала на одноосное напряжение в направлении этого напряжения (например, натягивание концов проволоки или размещение груза на вершине колонны, при этом проволока становится длиннее, а колонна теряет высоту).
  • в коэффициент Пуассона ν
    описывает отклик в направлениях , ортогональных к этому одноосного напряжения (проволоки становится тоньше и толще колонны),
  • объемный модуль упругости К
    описывает реакцию материала к (однородной) гидростатического давления (например , давление на дне океана или глубокий бассейн),
  • модуль сдвигаG
    описывает отклик материала к напряжению сдвига (как резок его с тупыми ножницами). Эти модули не являются независимыми, и для изотропных материалов они связаны уравнениями . [9] 2 G ( 1 + ν ) = E = 3 K ( 1 − 2 ν )

Модуль сдвига связан с деформацией твердого тела, когда оно испытывает силу, параллельную одной из его поверхностей, в то время как его противоположная сторона испытывает противодействующую силу (например, трение). Если объект имеет форму прямоугольной призмы, он деформируется в параллелепипед . Анизотропные материалы, такие как дерево , бумага, а также практически все монокристаллы, демонстрируют различную реакцию материала на напряжение или деформацию при испытании в разных направлениях. В этом случае может потребоваться использовать полное тензорное выражение упругих констант, а не одно скалярное значение.

Одно из возможных определений жидкости — это материал с нулевым модулем сдвига.

Определение модуля сдвига по кручению | Мой репетитор

Изучение деформации кручения. Определение модуля сдвига стержня статическим методом.

2. Содержание работы

Под действием приложенных к любому реальному телу сил оно деформируется, то есть изменяет свои размеры и форму. В теории упругости под термином деформация понимается всякое изменение в относительном расположении частиц твёрдого тела, возникшее под влиянием внешних сил.

В случае твёрдых тел различают два предельных случая: деформации упругие и деформации пластические. Если после прекращения действия достаточно малых сил тело принимает первоначальные размеры и форму, т.е. деформация исчезает, то такая деформация называется упругой. Упругие деформации наблюдаются в том случае, если сила, обусловившая деформацию, не превосходит некоторый, определённый для каждого конкретного тела предел, называемый пределом упругости. В случае, если действующие на тело силы велики, то с прекращением их действия вызываемая ими деформация исчезает не полностью и наблюдается так называемая остаточная деформация

. Таким образом, пластическими или остаточными деформациями называют такие деформации, которые сохраняются в теле (по крайней мере, частично) после прекращения действия внешних приложенных сил. Когда появляются первые признаки остаточной деформации, то говорят, что достигнут предел упругости. Является ли деформация упругой или пластической – это зависит не только от материала тела, но и от величины приложенных сил. Тела называются упругими, если предел упругости достигается при больших внешних усилиях (например, сталь, каучук и т.д.), и неупругими, если предел упругости достигается уже при очень слабых усилиях (например, свинец).

Деформация приводит к возникновению упругих сил. Упругая сила отличается от внешней только знаком. Упругие силы принято характеризовать напряжением σ, которое определяется как модуль силы, приходящейся на единицу площади поперечного сечения:

σ = F/S . (1)

В случае растяжения напряжение σ считается положительным, в случае сжатия – отрицательным. Напряжение называется

нормальным, если сила упругости
F направлена по нормали к площадке S, и касательным, если она направлена по касательной к этой площадке.
Пределом упругости называется максимальное напряжение, при котором ещё не возникают остаточные деформации.

Различают следующие виды деформаций: растяжение, сжатие, сдвиг, кручение, изгиб. Отметим, что среди множества различных видов деформаций следует выделить две простейшие: деформацию растяжения (или сжатия) и деформацию сдвига. Все остальные виды деформаций имеют более или менее сложный характер. В случае если деформации достаточно малы, то можно любую деформацию рассматривать как сумму некоторых растяжений и сдвигов.

Читайте также:
Меднение нержавеющей стали

В пределах малых деформаций все деформации удовлетворяют следующим основным законам:

1) в пределах упругости деформация пропорциональна величине внешнего усилия;

2) перемена знака внешнего усилия вызывает только перемену знака деформации, без изменения её абсолютной величины;

3) при действии нескольких внешних усилий общая деформация равна сумме частных деформаций.

Мерой деформации является относительная деформация

ε = Δl/l0, (2)

равная отношению абсолютной деформации Δl к первоначальному значению величины l0, характеризующей размеры или форму тела.

Сдвигом называют деформацию тела, при которой все его плоские слои, параллельные некоторой плоскости сдвига, не искривляясь и не изменяясь в размерах, смещаются параллельно друг другу.

γ = τ/G, (3)

где γ – угол сдвига или относительный сдвиг, выраженный в радианах, G — модуль сдвига, τ = F/S — касательное напряжение.

Как уже говорилось выше, линейная зависимость между напряжениями и малыми деформациями в упругой среде выражается законом Гука. Следовательно, формула (3) является записью закона Гука для деформации сдвига.

Физический смысл модуля сдвига
G: модуль сдвига равен такому тангенциальному (касательному) напряжению, при котором угол сдвига оказался бы равным 45°, если бы при столь больших деформациях не был превзойдён предел упругости.
Отметим, что углу сдвига, равному 45°, соответствует относительный сдвиг равный единице. Величина G зависит от свойств материала тела, но не зависит от его размеров и формы.

Модуль упругости Юнга и сдвига, коэффициент Пуассона значения (Таблица)

Общее понятие

При любом внешнем воздействии на предмет, внутри его возникают встречные силы, компенсирующие внешние. Для идеальных систем, находящихся в равновесии, силы равномерно распределены и равны, что позволяет сохранить форму предмета. Реальные системы не подчиняются таким правилам, что может привести к их деформации. Оценивая прочность материалов, говорят об их упругости.


Определение модуля Юнга твердых тел
Упругие материалы – это те, которые после прекращения внешнего воздействия, восстанавливают свою первоначальную форму.

Внутренние силы распределены равномерно по всей площади поперечного сечения предмета, имеют свою интенсивность, которая выражается количественно, называется напряжением (р) и измеряется в Н/м2 или по международной системе Па.

Напряжение имеет свою пространственную направленность: перпендикулярно площади сечения предмета – нормальное напряжение (σz) и лежащая в плоскости сечения – касательное напряжение (τz).


Опыт с пружинными весами

Модуль упругости (Е) как единицу измерения отношения материала к линейной деформации, и нормальное напряжение связывает формула закона Гука:

где ε – относительное удлинение или деформация.

Преобразовав формулу (1) для выражения из нее нормального напряжения, можно увидеть, что Е является постоянной при относительном удлинении, и называется коэффициентом жесткости, а его единицы измерения Па, кгс/мм2 или Н/м2:

Модуль упругости – это единица измерения отношения напряжения, создаваемого в материале, к линейной деформации, такой как, растяжение и сжатие.

В справочных материалах размерность модуля упругости выражается в МПа, так как деформация имеет довольно малое значение. А зависимость между этими величинами обратно пропорциональная. Таким образом, Е имеет высокое значение, определяемое 107-109.

Физический смысл модуля Юнга

Во время принудительного изменения формы предметов внутри них порождаются силы, сопротивляющиеся такому изменению, и стремящиеся к восстановлению исходной формы и размеров упругих тел.

Если же тело не оказывает сопротивления изменению формы и по окончании воздействия остается в деформированном виде, то такое тело называют абсолютно неупругим, или пластичным. Характерным примером пластичного тела является брусок пластилина.

Р. Гук исследовал удлинение стрежней из различных веществ, под воздействием подвешенных к свободному концу гирь. Количественным выражением степени изменения формы считают относительное удлинение, равное отношению абсолютного удлинения и исходной длины.

В результате серии опытов было установлено, что абсолютное удлинение пропорционально с коэффициентом упругости исходной длине стрежня и деформирующей силе F и обратно пропорционально площади сечения этого стержня S:

Величину, обратную α, и называют модулем Юнга:

ε = (Δl) / l = α * (F/S)

Отношение растягивающей силы F к S называют упругим напряжением σ:

Закон Гука, записанный с использованием модуля Юнга, выглядит так:

Теперь можно сформулировать физический смысл модуля Юнга: он соответствует напряжению, вызываемому растягиванием стержнеобразного образца вдвое, при условии сохранения целостности.

В реальности подавляющее большинство образцов разрушаются до того, как растянутся вдвое от первоначальной длины. Значение E вычисляют с помощью косвенного метода на малых деформациях.

Коэффициент жёсткости при упругой деформации стержня вдоль его оси k = (ES) / l

Модуль Юнга определяет величину потенциальной энергии тел или сред, подвергшихся упругой деформации.

Способы расчета модуля упругости

Известны также и другие характеристики упругости, которые описывают сопротивление материалов к воздействиям как к линейным, так и отличным от них.

Величина, которая характеризует сопротивление материала к растяжению, то есть увеличению его длины вдоль оси, или к сжатию – сокращению линейного размера, называется модулем продольной упругости.

Обозначается как Е и выражается в Па или ГПа.

Читайте также:
Монтаж трубопроводов из нержавеющей стали

Показывает зависимость относительного удлинения от нормальной составляющей cилы (F) к ее площади распространения (S) и упругости (Е):

Параметр также называют модулем Юнга или модулем упругости первого рода, в таблице показаны величины для материалов различной природы.

Название материала Значение параметра, ГПа
Алюминий 70
Дюралюминий 74
Железо 180
Латунь 95
Медь 110
Никель 210
Олово 35
Свинец 18
Серебро 80
Серый чугун 110
Сталь 190/210
Стекло 70
Титан 112
Хром 300

Модулем упругости второго рода называют модуль сдвига (G), который показывает сопротивление материала к сдвигающей силе (FG). Может быть выражена двумя способами.

  • Через касательные напряжения (τz) и угол сдвига (γ):
  • Через соотношение модуля упругости первого рода и коэффициента Пуасонна (ν):

Определенное в результате экспериментов значение сопротивления материала изгибу, называется модулем упругости при изгибе, и вычисляется следующим образом:

EИ = ((0,05-0,1)Fр— 0,2Fр)L2 / 4bh3(ƒ2-ƒ1) (6)

где Fр – разрушающая сила, Н;

L – расстояние между опорами, мм;

b, h – ширина и толщина образца, мм;

ƒ1, ƒ2– прогибы, образованные в результате нагрузки F1 и F2.

При равномерном давлении по всему объему на объект, возникает его сопротивление, называемое объемным модулем упругости или модулем сжатия (К). Выразить этот параметр можно, практически через все известные модули и коэффициент Пуассона.


Определение модуля упругости щебеночного основания

Параметры Ламе также используют для описания оценки прочности материала. Их два μ – модуль сдвига и λ. Они помогают учитывать все изменения внутри материала в трехмерном пространстве, тогда соотношения между нормальным напряжением и деформацией будет выглядеть следующим образом:

σ = 2με + λtrace(ε)I (7)

Оба параметра могут быть выражены из следующих соотношений:

Предел прочности материала

Это предел возникающего напряжения, после которого образец начинает разрушаться.

Статический предел прочности измеряется при продолжительном приложении деформирующего усилия, динамический — при кратковременном, ударном характере такого усилия. Для большинства веществ динамический предел больше, чем статический.

Инструмент для определения предела прочности

Кроме того, существуют пределы прочности на сжатие материала и на растяжение. Они определяются на испытательных стенда опытным путем, при растягивании или сжатии образцов мощными гидравлическим машинами, снабженными точными динамометрами и измерителями давления. В случае невозможности достижения требуемого давления гидравлическим способом иногда применяют направленный взрыв в герметичной капсуле.

Модуль упругости различных материалов

Модули упругости для различных материалов имеют совершенно разные значения, которые зависят от:

  • природы веществ, формирующих состав материала;
  • моно- или многокомпонентный состав (чистое вещество, сплав и так далее);
  • структуры (металлическая или другой вид кристаллической решетки, молекулярное строение прочее);
  • плотности материала (распределения частиц в его объеме);
  • обработки, которой он подвергался (обжиг, травление, прессование и тому подобное).

Так, например, в справочных данных можно найти, что модуль упругости для алюминия составляет диапазон от 61,8 до 73,6 ГПа. Видимо, это и зависит от состояния металла и вида обработки, потому как для отожженного алюминия модуль Юнга – 68,5 ГПа.

Его значение для бронзовых материалов зависит не только от обработки, но и от химического состава:

  • бронза – 10,4 ГПа;
  • алюминиевая бронза при литье – 10,3 ГПа;
  • фосфористая бронза катанная – 11,3 ГПа.

Модуль Юнга латуни на много ниже – 78,5-98,1. Максимальное значение имеет катанная латунь.

Сама же медь в чистом виде характеризуется сопротивлением к внешним воздействиям значительно большим, чем ее сплавы – 128,7 ГПа. Обработка ее также снижает показатель, в том числе и прокатка:

  • литая – 82 ГПа;
  • прокатанная – 108 ГПа;
  • деформированная – 112 ГПа;
  • холоднотянутая – 127 ГПа.

Близким значением к меди обладает титан (108 ГПа), который считается одним из самых прочных металлов. А вот тяжелый, но ломкий свинец, показывает всего 15,7-16,2 ГПа, что сравнимо с прочностью древесины.

Для железа показатель напряжения к деформации также зависит от метода его обработки: литое – 100-130 или кованное – 196,2-215,8 ГПа.

Чугун известен своей хрупкостью имеет отношение напряжения к деформации от 73,6 до 150 ГПа, что соответствует от его виду. Тогда как для стали модуль упругости может достигать 235 ГПа.


Модули упругости некоторых материалов

На величины параметров прочности влияют также и формы изделий. Например, для стального каната проводят расчеты, где учитывают:

  • его диаметр;
  • шаг свивки;
  • угол свивки.

Интересно, что этот показатель для каната будет значительно ниже, чем для проволоки такого же диаметра.

Стоит отметить прочность и не металлических материалов. Например, среди модулей Юнга дерева наименьший у сосны – 8,8 ГПа, а вот у группы твердых пород, которые объединены под названием «железное дерево» самый высокий – 32,5 ГПа, дуб и бук имеют равные показатели – 16,3 ГПа.

Читайте также:
Маятниковая пила по дереву своими руками

Среди строительных материалов, сопротивление к внешним силам у, казалось бы, прочного гранита всего 35-50 ГПа, когда даже у стекла – 78 ГПа. Уступают стеклу бетон – до 40 ГПа, известняк и мрамор, со значениями 35 и 50 ГПа соответственно.

Такие гибкие материалы, как каучук и резина, выдерживают осевую нагрузку от 0,0015 до 0,0079 ГПа.

Способы определения и контроля показателей прочности металлов

Развитие металлургии и других сопутствующих направлений по изготовлению предметов из металла обязано созданию оружия. Сначала научились выплавлять цветные металлы, но прочность изделий была относительно невысокой. Только с появлением железа и его сплавов началось изучение их свойств.

Первые мечи для придания им твердости и прочности делали довольно тяжелыми. Воинам приходилось брать их в обе руки, чтобы управляться с ними.

Со временем появились новые сплавы, разрабатывались технологии производства. Легкие сабли и шпаги пришли на замену тяжеловесному оружию. Параллельно создавались орудия труда.

С повышением прочностных характеристик совершенствовались инструменты и способы производства.

Виды нагрузок

При использовании металлов прилагаются разные нагрузки статического и динамического воздействия. В теории прочности принято определять нагружения следующих видов.

  • Сжатие – действующая сила сдавливает предмет, вызывая уменьшение длины вдоль направления приложения нагрузки. Такую деформацию ощущают станины, опорные поверхности, стойки и ряд других конструкций, выдерживающих определённый вес. Мосты и переправы, рамы автомобилей и тракторов, фундаменты и арматура, – все эти конструктивные элементы находятся при постоянном сжатии.
  • Растяжение – нагрузка стремится удлинить тело в определенном направлении. Подъемно-транспортные машины и механизмы испытывают подобные нагружения при подъеме и переноске грузов.
  • Сдвиг и срез – такое нагружение наблюдается в случае действия сил, направленных вдоль одной оси навстречу друг другу. Соединительные элементы (болты, винты, заклепки и другие метизы) испытывают нагрузку подобного вида. В конструкции корпусов, металлокаркасов, редукторов и других узлов механизмов и машин обязательно имеются соединительные детали. От их прочности зависит работоспособность устройств.
  • Кручение – если на предмет действует пара сил, находящихся на определенном расстоянии друг от друга, то возникает крутящий момент. Эти усилия стремятся произвести скручивающую деформацию. Подобные нагружения наблюдаются в коробках передач, валы испытывают именно такую нагрузку. Она чаще всего непостоянная по значению. В течение времени величина действующих сил меняется.
  • Изгиб – нагрузка, которая изменяет кривизну предметов, считается изгибающей. Мосты, перекладины, консоли, подъемно-транспортные механизмы и другие детали испытывают подобное нагружение.

В середине XVII века одновременно в нескольких странах начались исследования материалов. Предлагались самые разные методики по определению прочностных характеристик. Английский исследователь Роберт Гук (1660 г.) сформулировал основные положения закона по удлинению упругих тел в результате приложения нагрузки (закона Гука). Введены и понятия:

  1. Напряжения σ, которое в механике измеряется в виде нагрузки, приложенной к определенной площади (кгс/см², Н/м², Па).
  2. Модуля упругости Е, который определяет способность твердого тела деформироваться под действием нагружения (приложения силы в заданном направлении). Единицы измерения также определяются в кгс/см² (Н/м², Па).

Формула по закону Гука записывается в виде ε = σz/E, где:

  • ε – относительное удлинение;
  • σz – нормальное напряжение.

Демонстрация закона Гука для упругих тел:

Из приведенной зависимости выводится значение Е для определенного материала опытным путем, Е = σz/ε.

Модуль упругости – это постоянная величина, характеризующая сопротивление тела и его конструкционного материала при нормальной растягивающей или сжимающей нагрузке.

В теории прочности принято понятие модуль упругости Юнга. Это английский исследователь дал более конкретное описание способам изменения прочностных показателей при нормальных нагружениях.

Значения модуля упругости для некоторых материалов приведены в таблице 1.

Таблица 1: Модуль упругости для металлов и сплавов

Наименование материала Значение модуля упругости, 10¹²·Па
Алюминий 65…72
Дюралюминий 69…76
Железо, содержание углерода менее 0,08 % 165…186
Латунь 88…99
Медь (Cu, 99 %) 107…110
Никель 200…210
Олово 32…38
Свинец 14…19
Серебро 78…84
Серый чугун 110…130
Сталь 190…210
Стекло 65…72
Титан 112…120
Хром 300…310

Как определить модуль упругости стали

Выяснить модули упругости для различных марок стали можно несколькими путями:

  1. по справочным данным из таблиц;
  2. экспериментальными методами для небольшого образца;
  3. расчетными методами, зная необходимые данные.

Жесткость стали зависит от ее химического состава и вида кристаллической решетки, от плотности, достигнутой в результате обработки. Прочность же ее конструкций определяется такими важными факторами, как параметры изделия, в том числе габариты, эксплуатационные нагрузки, и их длительность. При расчетах, выполняемых по нормированным методикам, результат осознанно завышают, чтобы предупредить возможные аварии и поломки.

Тем не менее, устойчивость стали к деформации определяется изначально ее маркой, то есть наличием примесей в сплаве.

В таблице приведены модули упругости стали наиболее популярных марок, а модуль сдвига ее составляет – 80-81 ГПа.

Читайте также:
Модельная оснастка для литейного производства
Сталь Модуль (Е), ГПа
углеродистая 195-205
легированная 206-235
Ст.3, Ст.5 210
сталь 45 200
25Г2С, 30ХГ2С 200

Из таблицы видно, что наименьшее значение прочности у стали 45, 25Г2С, 30ХГ2С, а у нержавеющей стали самое высокое – 235 ГПа.

Экспериментальный метод определения заключается в определении относительного удлинения небольшого стального образца на установке, с последующим расчетом.

В основе метода лежит заключение, что растяжение образца стали до предела упругости, подчиняется закону Гука (1). Зная приложенную силу (F) и площадь детали (А), выяснив ее удлинение (Δl) можно рассчитать Е:

Расчеты ведут в мм и МПа.

Для проектирования конструкций необходимо всегда знать или просчитывать не менее двух разных модулей упругости. Исходя из коэффициента жесткости можно перейти к другим видам сопротивления к воздействию извне для стали: упругости при изгибе и объемной.

Модуль Юнга и его основной физический смысл

Общие понятия

Модуль упругости (модуль Юнга) — это показатель механического свойства материала, характеризующий его сопротивляемость деформации растяжения. Иными словами, это значение пластичности материала. Чем выше значения модуля упругости, тем меньше будет какой-либо стержень растягиваться при иных равных нагрузках (площадь сечения, величина нагрузки и другие).

Модуль Юнга в теории упругости обозначается буквой Е. Он является составляющей закона Гука (о деформации упругих тел). Эта величина связывает возникающее в образце напряжение и его деформацию.

Измеряется эта величина согласно стандартной международной системе единиц в МПа (Мегапаскалях). Но инженеры на практике больше склоняются к применению размерности кгс/см2.

Опытным путём осуществляется определение этого показателя в научных лабораториях. Сутью этого метода является разрыв гантелеобразных образцов материала на специальном оборудовании. Узнав удлинение и натяжение, при которых образец разрушился, делят переменные данные друг на друга. Полученная величина и является модулем (Юнга) упругости.

Таким образом определяется только модуль Юнга материалов упругих: медь, сталь и прочее. А материалы хрупкие сжимают до того момента, пока не появятся трещины: бетон, чугун и им подобные.



Модуль упругости — что это?

Модулем упругости какого-либо материала называют совокупность физических величин, которые характеризуют способность какого-либо твёрдого тела упруго деформироваться в условиях приложения к нему силы. Выражается она буквой Е. Так она будет упомянута во всех таблицах, которые будут идти далее в статье.

Невозможно утверждать, что существует только один способ выявления значения упругости. Различные подходы к изучению этой величины привели к тому, что существует сразу несколько разных подходов. Ниже будут приведены три основных способа расчёта показателей этой характеристики для разных материалов:

  • Модуль Юнга (Е) описывает сопротивление материала любому растяжению или сжатию при упругой деформации. Определяется вариант Юнга отношением напряжения к деформации сжатия. Обычно именно его называют просто модулем упругости.
  • Модуль сдвига (G), называемый также модулем жёсткости. Этот способ выявляет способность материала оказывать сопротивление любому изменению формы, но в условиях сохранения им своей нормы. Модуль сдвига выражается отношением напряжения сдвига к деформации сдвига, которая определяется в виде изменения прямого угла между имеющимися плоскостями, подвергающимися воздействию касательных напряжений. Модуль сдвига, кстати, является одной из составляющих такого явления, как вязкость.
  • Модуль объёмной упругости (К), которые также именуется модулем объёмного сжатия. Данный вариант обозначает способность объекта из какого-либо материала изменять свой объём в случае воздействия на него всестороннего нормального напряжения, являющимся одинаковым по всем своим направлениям. Выражается этот вариант отношением величины объёмного напряжения к величине относительного объёмного сжатия.
  • Существуют также и другие показатели упругости, которые измеряются в других величинах и выражаются другими отношениями. Другими ещё очень известными и популярными вариантами показателей упругости являются параметры Ламе или же коэффициент Пуассона.



Механические свойства

Только при работе на растяжение или сжатие модуль (Юнга) упругости помогает угадать поведение того или иного материала. А вот при изгибе, срезе, смятии и прочих нагрузках потребуется ввести дополнительные параметры:

Читать также: Прибор который ищет провода в стене

  1. Жёсткостью называют произведение поперечного сечения профиля на модуль упругости. По этой величине можно судить о пластичности узла конструкции в целом, а не о материале отдельно. Единицей измерения являются килограммы силы.
  2. Продольное относительное удлинение — это отношение абсолютного удлинения материала-образца к его общей длине. К примеру, на стержень, длина которого равна 200 миллиметров, приложили некоторую силу. В результате он стал короче на 5 миллиметров. В результате относительное удлинение будет равняться 0,05. Эта величина безразмерная. Для более удобного восприятия иногда её переводят в проценты.
  3. Поперечное относительное удлинение рассчитывается точно так же, как и продольное относительное удлинение, но вместо длины берут диаметр стержня. Опытным путём было установлено, что для большего количества материала поперечное меньше продольного удлинения приблизительно в 4 раза.
  4. Коэффициент Пуассона. Это отношения относительной продольной к относительной поперечной деформации. При помощи этой величины можно полностью описать под воздействием нагрузки изменения формы.
  5. Модуль сдвига описывает упругие свойства под воздействием касательных свойств на образец. Иными словами, когда вектор силы направляется к поверхности тела под 90 градусов. Примером подобных нагрузок служит работа гвоздей на смятие, заклёпок на срез и пр. Этот параметр связан с вязкостью материала.
  6. Модуль упругости объёмной характеризует изменение объёма образца для разностороннего равномерного приложения нагрузки. Эта величина является отношением давления объёмного к деформации сжатия объёмной. Как пример можно рассматривать опущенный в воду материал, на который воздействует давление жидкости по всей его площади.
Читайте также:
Лазерная зачистка металла

Кроме всего вышесказанного стоит упомянуть, что у некоторых материалов в зависимости от направления нагрузки разные механические свойства. Подобные материалы называются анизотропными. Примерами подобного является ткани, некоторые виды камня, слоистые пластмассы, древесина и прочее.

У материалов изотропных механические свойства и деформация упругая в любом направлении одинаковы. К таким материалам относятся металлы: алюминий, медь, чугун, сталь и прочее, а также каучук, бетон, естественные камни, пластмассы неслоистые.



Модуль упругости Юнга и сдвига, коэффициент Пуассона значения (Таблица)

Упругие свойства тел

Ниже приводятся справочные таблицы общеупотребительных констант; если известны две их них, то этого вполне достаточно для определения упругих свойств однородного изотропного твердого тела.

Модуль Юнга или модуль продольной упругости в дин/см2.

Модуль сдвига или модуль кручения G в дин/см2.

Модуль всестороннего сжатия или модуль объемной упругости К в дин/см2.

Объем сжимаемости k=1/K/.

Коэффициент Пуассона µ равен отношению поперечного относительного сжатия к продольному относительному растяжению.

Для однородного изотропного твердого материала имеют место следующие соотношения между этими константами:

K = E / 3(1 — 2μ) — (c)

Коэффициент Пуассона имеет положительный знак, и его значение обычно заключено в пределах от 0,25 до 0,5, но в некоторых случаях он может выходить за указанные пределы. Степень совпадения наблюдаемых значений µ и вычисленных по формуле (b) является показателем изотропности материала.

Таблицы значений Модуля упругости Юнга, Модуля сдвига и коэффициента Пуассона

Курсивом даны значения, вычисленные из соотношений (a), (b), (c).

Экспериментальные результаты, приводимые ниже, относятся к обычным лабораторным материалам, главным образом проволокам.

Вещество Модуль Юнга E, 1011 дин/см2. Модуль сдвига G, 1011 дин/см2. Коэффициент Пуассона µ Модуль объемной упругости К, 1011 дин/см2.
Бронза (66% Cu) -9,7-10,2 3,3-3,7 0,34-0,40 11,2
Медь 10,5-13,0 3,5-4,9 0,34 13,8
Нейзильбер1) 11,6 4,3-4,7 0,37
Стекло 5,1-7,1 3,1 0,17-0,32 3,75
Стекло иенское крон 6,5-7,8 2,6-3,2 0,20-0,27 4,0-5,9
Стекло иенское флинт 5,0-6,0 2,0-2,5 0,22-0,26 3,6-3,8
Железо сварочное 19-20 7,7-8,3 0,29 16,9
Чугун 10-13 3,5-5,3 0,23-0,31 9,6
Магний 4,25 1,63 0,30
Бронза фосфористая2) 12,0 4,36 0,38
Платиноид3) 13,6 3,6 0,37
Кварцевые нити (плав.) 7,3 3,1 0,17 3,7
Резина мягкая вулканизированная 0,00015-0,0005 0,00005-0,00015 0,46-0,49
Сталь 20-21 7,9-8,9 0,25-0,33 16,8
Цинк 8,7 3,8 0,21
1) 60% Cu, 15% Ni, 25% Zn

2) 92,5% Cu, 7% Sn, 0,5% P

3) Нейзильбер с небольшим количеством вольфрама.

2) Обнаруживает заметную упругую усталость

Et=E11 (1-ɑ (t-15)), Gt=G11 (1-ɑ (t-15))

Модуль Юнга

Компьютерная модель позволяет провести ряд экспериментов по теме «Сила упругости. Закон Гука». Экспериментальная установка представляет собой штатив с подвешенным на металлической проволоке телом. Можно изменять материал, из которого изготовлена проволока, площадь ее сечения, начальную длину, а также массу подвешенного груза. В информационном окне выводится информация об удлинении проволоки.

При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества. Ее называют силой упругости.

При малых деформациях (|x| Читайте также: Как определить температуру металла по цвету

σ = F / S = –Fупр / S,

где S – площадь поперечного сечения деформированного тела, называется напряжением. Тогда закон Гука можно сформулировать так: относительная деформация ε пропорциональна напряжению σ:
Коэффициент E в этой формуле называется модулем Юнга. Модуль Юнга зависит только от свойств материала и не зависит от размеров и формы тела. Модуль Юнга различных материалов меняется в широких пределах. Для стали, например, E ≈ 2∙1011 Н/м2, а для резины E ≈ 2∙106 Н/м2, то есть на пять порядков меньше.

В рамках эксперимента можно выбирать материал проволоки (сталь, железо, медь, латунь, алюминий, свинец), площадь ее сечения (от 1 до 5 мм2 с шагом 0,5 мм2), массу груза (от 1 до 10 кг с шагом 0,5 кг).

Задав исходные условия эксперимента можно пронаблюдать результат, считывая показания удлинения проволоки по увеличенному участку измерительной шкалы.

Модель может стать основой исследовательских работ по данной учебной теме, т. к. допускает широкую вариативность исходных условий.


шпоргалка / подготовка к ЭКЗАМЕНУ / 46.Основные механические свойства. Модуль сдвига

46.Основные механические свойства. Модуль сдвига

Механические свойства материалов,

совокупность показателей, характеризующих сопротивление материала воз действующей на него нагрузке, его способность деформироваться при этом, а также особенности его поведения в процессе разрушения. В соответствии с этим М. с. м. измеряют напряжениями (обычно в кгс/мм 2 или Мн/м 2 ), деформациями (в %), удельной работой деформации и разрушения (обычно в кгс×м/см 2 или Мдж/м 2 ), скоростью развития процесса разрушения при статической или повторной нагрузке (чаще всего в мм за 1 сек или за 1000 циклов повторений нагрузки, мм/кцикл). М. с. м. определяются при механических испытаниях образцов различной формы.

В общем случае материалы в конструкциях могут подвергаться самым различным по характеру нагрузкам (рис. 1): работать нарастяжение, сжатие, изгиб, кручение, срез и т. д. или подвергаться совместному действию нескольких видов нагрузки, например растяжению и изгибу. Также разнообразны условия эксплуатации материалов и по температуре, окружающей среде, скорости приложения нагрузки и закону её изменения во времени. В соответствии с этим имеется много показателей М. с. м. и много методов механических испытаний. Для металлов и конструкционных пластмасс наиболее распространены испытания на растяжение, твёрдость, ударный изгиб; хрупкие конструкционные материалы (например, керамику, металлокерамику) часто испытывают на сжатие и статический изгиб; механические свойства композиционных материалов важно оценивать, кроме того, при испытаниях на сдвиг.

Диаграмма деформации. Приложенная к образцу нагрузка вызывает его деформацию. Соотношения между нагрузкой и деформацией описываются т. н. диаграммой деформации (рис. 2). Вначале деформация образца (при растяжении — приращение длины Dl ) пропорциональна возрастающей нагрузке Р, затем в точке n эта пропорциональность нарушается, однако для увеличения деформации необходимо дальнейшее повышение нагрузки Р; при Dl > Dlв деформация развивается без приложения усилия извне, при постепенно падающей нагрузке. Вид диаграммы деформации не меняется, если по оси ординат откладывать напряжение

а по оси абсцисс — относительное удлинение

(F и l — соответственно начальная площадь поперечного сечения и расчётная длина образца).

Сопротивление материалов измеряется напряжениями, характеризующими нагрузку, приходящуюся на единицу площади поперечного сечения образца

в кгс/мм 2 . Напряжение

при котором нарушается пропорциональный нагрузке рост деформации, называется пределом пропорциональности. При нагрузкеР 0; (s2 = s3 = 0) напряжённому состоянию соответствует трёхосное деформированное состояние (приращение длины в направлении действия приложенных сил и уменьшение линейных размеров в двух других взаимно перпендикулярных направлениях): d1>0; d2 = d3 Рв наряду со всё возрастающей упругой деформацией появляется заметная необратимая, не исчезающая при разгрузке пластическая деформация. Напряжение, при котором остаточная относительная деформация (при растяжении — удлинение) достигает заданной величины (по ГОСТ — 0,2 %), называется условным пределом текучести и обозначается

Практически точность современных методов испытания такова, что sп и sе определяют с заданными допусками соответственно на отклонение от закона пропорциональности [увеличение ctg(90 — a) на 25—50 %] и на величину остаточной деформации (0,003—0,05 %) и говорят об условных пределах пропорциональности и упругости. Кривая растяжения конструкционных металлов может иметь максимум (точка в на рис. 2) или обрываться при достижении наибольшей нагрузки Рв. Отношение

характеризует временное сопротивление (предел прочности) материала. При наличии максимума на кривой растяжения в области нагрузок, лежащих на кривой левее в, образец деформируется равномерно по всей расчётной длине l, постепенно уменьшаясь в диаметре, но сохраняя начальную цилиндрическую или призматическую форму. При пластической деформации металлы упрочняются, поэтому, несмотря на уменьшение сечения образца, для дальнейшей деформации требуется прикладывать всё возрастающую нагрузку. sв, как и условные s0,2, sn и sе, характеризует сопротивление металлов пластической деформации. На участке диаграммы деформации правее в форма растягиваемого образца изменяется: наступает период сосредоточенной деформации, выражающейся в появлении “шейки”. Уменьшение сечения в шейке “обгоняет” упрочнение металлов, что и обусловливает падение внешней нагрузки на участке Рв — Pk.

У многих конструкционных материалов сопротивление пластической деформации в упруго-пластической области при растяжении и сжатии практически одинаково. Для некоторых металлов и сплавов (например, магниевые сплавы, высокопрочные стали) характерны заметные различия по этой характеристике при растяжении и сжатии. Сопротивление пластической деформации особенно часто (при контроле качества продукции, стандартности режимов термической обработки и в др. случаях) оценивается по результатам испытаний на твёрдость путём вдавливания твёрдого наконечника в форме шарика (твёрдость по Бринеллю или Роквеллу), конуса (твёрдость по Роквеллу) или пирамиды (твёрдость по Виккерсу). Испытания на твёрдость не требуют нарушения целостности детали и потому являются самым массовым средством контроля механических свойств. Твёрдость по Бринеллю (HB) при вдавливании шарика диаметром D под нагрузкой Р характеризует среднее сжимающее напряжение, условно вычисляемое на единицу поверхности шарового отпечатка диаметром d:

Характеристики пластичности. Пластичность при растяжении конструкционных материалов оценивается удлинением

при сжатии — укорочением

(где h и hk — начальная и конечная высота образца), при кручении — предельным углом закручивания рабочей части образца Q,рад или относительным сдвигом g = Qr (где r — радиус образца). Конечная ордината диаграммы деформации (точка k на рис. 2) характеризует сопротивление разрушению металла Sk, которое определяется

(Fk — фактическая площадь в месте разрыва).

Модуль сдвига-величина, характеризующая деформацию сдвига. Модуль сдвига равен отношению касательного напряжения к величине угла сдвига. В начальной части диаграмма сдвига (на рисунке) линейная, т.е. угол сдвига пропорционален касательному напряжению . Закон пропорциональности, называемый законом Гука при сдвиге, может быть записан:

где коэффициент пропорциональности G называется модулем сдвига сдвига или модулем упругости 2-го рода. Он характеризует сопротивление материала упругим деформациям и является его упругой постоянной.

Модуль Юнга (упругости) для стали и других материалов — определение, смысл

Перед тем, как использовать какой-либо материал в строительных работах, следует ознакомиться с его физическими характеристиками для того, чтобы знать как с ним обращаться, какое механическое воздействие будет для него приемлемым, и так далее. Одной из важных характеристик, на которые очень часто обращают внимание, является модуль упругости.

Ниже рассмотрим само понятие, а также эту величину по отношению к одному из самых популярных в строительстве и ремонтных работах материалу — стали. Также будут рассмотрены эти показатели у других материалов, ради примера.

Связь с другими модулями упругости

В случае изотропного тела модуль Юнга связан с модулем сдвига и модулем объёмной упругости соотношениями

где — коэффициент Пуассона.

Модуль упругости — что это?

Модулем упругости какого-либо материала называют совокупность физических величин, которые характеризуют способность какого-либо твёрдого тела упруго деформироваться в условиях приложения к нему силы. Выражается она буквой Е. Так она будет упомянута во всех таблицах, которые будут идти далее в статье.

Невозможно утверждать, что существует только один способ выявления значения упругости. Различные подходы к изучению этой величины привели к тому, что существует сразу несколько разных подходов. Ниже будут приведены три основных способа расчёта показателей этой характеристики для разных материалов:

  • Модуль Юнга (Е) описывает сопротивление материала любому растяжению или сжатию при упругой деформации. Определяется вариант Юнга отношением напряжения к деформации сжатия. Обычно именно его называют просто модулем упругости.
  • Модуль сдвига (G), называемый также модулем жёсткости. Этот способ выявляет способность материала оказывать сопротивление любому изменению формы, но в условиях сохранения им своей нормы. Модуль сдвига выражается отношением напряжения сдвига к деформации сдвига, которая определяется в виде изменения прямого угла между имеющимися плоскостями, подвергающимися воздействию касательных напряжений. Модуль сдвига, кстати, является одной из составляющих такого явления, как вязкость.
  • Модуль объёмной упругости (К), которые также именуется модулем объёмного сжатия. Данный вариант обозначает способность объекта из какого-либо материала изменять свой объём в случае воздействия на него всестороннего нормального напряжения, являющимся одинаковым по всем своим направлениям. Выражается этот вариант отношением величины объёмного напряжения к величине относительного объёмного сжатия.
  • Существуют также и другие показатели упругости, которые измеряются в других величинах и выражаются другими отношениями. Другими ещё очень известными и популярными вариантами показателей упругости являются параметры Ламе или же коэффициент Пуассона.

Температурная зависимость модуля Юнга

Температурная зависимость модуля упругости простых кристаллических материалов объясняется исходя из того, что модуль упругости определяется как вторая производная от внутренней энергии по соответствующей деформации . Поэтому при температурах ( — температура Дебая) температурная зависимость модуля упругости определяется простым соотношением

где — адиабатический модуль упругости идеального кристалла при ; — дефект модуля, обусловленный тепловыми фононами; — дефект модуля, обусловленный тепловым движением электронов проводимости

Механические свойства

Только при работе на растяжение или сжатие модуль (Юнга) упругости помогает угадать поведение того или иного материала. А вот при изгибе, срезе, смятии и прочих нагрузках потребуется ввести дополнительные параметры:

  1. Жёсткостью называют произведение поперечного сечения профиля на модуль упругости. По этой величине можно судить о пластичности узла конструкции в целом, а не о материале отдельно. Единицей измерения являются килограммы силы.
  2. Продольное относительное удлинение — это отношение абсолютного удлинения материала-образца к его общей длине. К примеру, на стержень, длина которого равна 200 миллиметров, приложили некоторую силу. В результате он стал короче на 5 миллиметров. В результате относительное удлинение будет равняться 0,05. Эта величина безразмерная. Для более удобного восприятия иногда её переводят в проценты.
  3. Поперечное относительное удлинение рассчитывается точно так же, как и продольное относительное удлинение, но вместо длины берут диаметр стержня. Опытным путём было установлено, что для большего количества материала поперечное меньше продольного удлинения приблизительно в 4 раза.
  4. Коэффициент Пуассона. Это отношения относительной продольной к относительной поперечной деформации. При помощи этой величины можно полностью описать под воздействием нагрузки изменения формы.
  5. Модуль сдвига описывает упругие свойства под воздействием касательных свойств на образец. Иными словами, когда вектор силы направляется к поверхности тела под 90 градусов. Примером подобных нагрузок служит работа гвоздей на смятие, заклёпок на срез и пр. Этот параметр связан с вязкостью материала.
  6. Модуль упругости объёмной характеризует изменение объёма образца для разностороннего равномерного приложения нагрузки. Эта величина является отношением давления объёмного к деформации сжатия объёмной. Как пример можно рассматривать опущенный в воду материал, на который воздействует давление жидкости по всей его площади.

Кроме всего вышесказанного стоит упомянуть, что у некоторых материалов в зависимости от направления нагрузки разные механические свойства. Подобные материалы называются анизотропными. Примерами подобного является ткани, некоторые виды камня, слоистые пластмассы, древесина и прочее.

У материалов изотропных механические свойства и деформация упругая в любом направлении одинаковы. К таким материалам относятся металлы: алюминий, медь, чугун, сталь и прочее, а также каучук, бетон, естественные камни, пластмассы неслоистые.

Таблица показателей упругости материалов

Перед тем, как перейти непосредственно к этой характеристике стали, рассмотрим для начала, в качестве примера и дополнительной информации, таблицу, содержащую данные об этой величине по отношению к другим материалам. Данные измеряются в МПа.

Модуль упругости различных материалов

Как можно заметить из представленной выше таблицы, это значение является разным для разных материалов, к тому же показателя разнятся, если учитывать тот или иной вариант вычисления этого показателя. Каждый волен выбирать именно тот вариант изучения показателей, который больше подойдёт ему. Предпочтительнее, возможно, считать модуль Юнга, так как он чаще применяется именно для характеристики того или иного материала в этом отношении.

После того как мы кратко ознакомились с данными этой характеристики других материалов, перейдём непосредственно к характеристике отдельно стали.

Для начала обратимся к сухим цифрам и выведем различные показатели этой характеристики для разных видов сталей и стальных конструкций:

  • Модуль упругости (Е) для литья, горячекатанной арматуры из сталей марок, именуемых Ст.3 и Ст. 5 равняется 2,1*106 кг/см^2.
  • Для таких сталей как 25Г2С и 30ХГ2С это значение равно 2*106 кг/см^2.
  • Для проволоки периодического профиля и холоднотянутой круглой проволоки, существует такое значение упругости, равняющееся 1,8*106 кг/см^2. Для холодно-сплющенной арматуры показатели аналогичны.
  • Для прядей и пучков высокопрочной проволоки значение равняется 2·10 6 кГ/см^2
  • Для стальных спиральных канатов и канатов с металлическим сердечником значение равняется 1,5·10 4 кГ/см^2, в то время как для тросов с сердечником органическим это значение не превышает1,3·10 6 кГ/см^2 .
  • Модуль сдвига (G) для прокатной стали равен 8,4·10 6 кГ/см^2 .
  • И напоследок коэффициент Пуассона для стали равен значению 0,3

Это общие данные, приведённые для видов стали и стальных изделий. Каждая величина была высчитано согласно всем физическим правилам и с учётом всех имеющихся отношений, которые используются для выведения величин этой характеристики.

Ниже будет приведена вся общая информация об этой характеристике стали. Значения будут даваться как по модулю Юнга, так и по модулю сдвига, как в одних единицах измерения (МПа), так и в других (кг/см2, ньютон*м2).

Сталь и несколько разных её марок

Значения показателей упругости стали разнятся, так как существуют сразу несколько модулей, которые исчисляются и высчитываются по-разному. Можно заметить тот факт, что в принципе сильно показатели не разнятся, что свидетельствует в пользу разных исследований упругости различных материалов. Но сильно углубляться во все вычисления, формулы и значения не стоит, так как достаточно выбрать определённое значение упругости, чтобы уже в дальнейшем ориентироваться на него.

Кстати, если не выражать все значения числовыми отношениями, а взять сразу и пос, то эта характеристика стали будет равна: Е=200000 МПа или Е=2 039 000 кг/см^2.

Данная информация поможет разобраться с самим понятием модуля упругости, а также ознакомиться с основными значения данной характеристики для стали, стальных изделий, а также для нескольких других материалов.

Следует помнить, что показатели модуля упругости разные для различных сплавов стали и для различных стальных конструкций, которые содержат в своём составе и другие соединения. Но даже в таких условиях, можно заметить тот факт, что различаются показатели ненамного. Величина модуля упругости стали практически зависит от структуры. а также от содержания углерода. Способ горячей или холодной обработки стали также не может сильно повлиять на этот показатель.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
gmnu-nazarovo.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: