Волновой редуктор своими руками

Волновой редуктор — принцип работы, устройство, применение, типы

Волновой редуктор, или, как его еще называют, волновая передача, основывается на том, чтобы передавать вращательное движение, которое возникает за счет бегущей волновой деформации одного из зубчатых колес.

Классификация редукторов

Редукторы бывают конические, цилиндрические, волновые, планетарные – это зубчатые типы передач, а также червячного типа. Кроме того они могут быть одноступенчатыми, двухступенчатыми и трехступенчатыми системами. При этом в двухступенчатых и трехступенчатых редукторах могут применяться разные типы передач. Помимо подразделения по типам передач, редукторы делятся и по своему конструктивному исполнению.

Типы редукторов по такому принципу делятся на механические и мотор-редукторы.

Механические редукторы представляют собой просто механические передачи, а мотор-редукторы — это совмещенные в одном корпусе редуктор и электродвигатель. По типу расположения в пространстве редукторы делятся на горизонтальные и вертикальные.

Характеристики

Волновые передачи применяются при больших передаточных отношениях, когда требуется повышенная кинематическая точность и низкий уровень шума. Оптимальное передаточное отношение, которое зависит от материала гибкого элемента, составляет 75…320. Коэффициент полезного действия (при передаточном отношении 100) составляет 0,9.

Волновые зубчатые передачи, преимущества

  • большие передаточные числа (диапазон от 40 до 320);
  • высокий КПД (0.8 – 0.9);
  • высокий крутящий момент на выходе;
  • передача движения сквозь герметичную перегородку не требующая дополнительных уплотнений;
  • компактность и малогабаритность (в несколько раз меньше зубчатых передач);
  • высокая нагрузочная способность при небольших габаритах и массе;
  • плавность хода и низкий уровень шума во время работы;
  • много парность и многозонность зацепления обеспечивают малую кинематическую погрешность и высокую жесткость механизма;
  • малая вибрация и погрешности при изготовлении и монтаже;
  • высокая надежность и продолжительность срока службы (до 15 лет) из-за простоты, прочности и симметричности конструкции;
  • высокая износостойкость благодаря отсутствию трения скольжения;
  • минимальные затраты на техническое обслуживание (благодаря применению пластичной смазки контроль за уровнем смазки не требуется);
  • быстрый запуски торможение механизмов благодаря малой инерции и высокой динамичности.

Волновая зубчатая передача

Принцип действия

Состоит из жёсткого неподвижного элемента — зубчатого колеса с внутренними зубьями, неподвижного относительно корпуса передачи; гибкого элемента — тонкостенного упругого зубчатого колеса с наружными зубьями, соединённого с выходным валом; генератора волн — кулачка, эксцентрика или другого механизма, растягивающего гибкий элемент до образования в двух (или более) точках пар зацепления с неподвижным элементом. Число зубьев гибкого колеса несколько меньше числа зубьев неподвижного элемента. Число волн деформации равно числу выступов на генераторе. В вершинах волн зубья гибкого колеса полностью входят в зацепление с зубьями жёсткого, а во впадинах волн — полностью выходят из зацепления. Линейная скорость волн деформации соответствует скорости вершин выступов на генераторе, то есть в гибком элементе существуют бегущие волны с известной линейной скоростью. Разница чисел зубьев жёсткого и гибкого колёс обычно равна (реже кратна) числу волн деформации.

Например, при числе зубьев гибкого колеса 200, неподвижного элемента — 202 и двухволновой передаче (два выступа на генераторе волн) при вращении генератора по часовой стрелке первый зуб гибкого колеса будет входить в первую впадину жёсткого, второй — во вторую и т.д. до двухсотого зуба и двухсотой впадины. На следующем обороте первый зуб гибкого колеса войдёт в двести первую впадину, второй — в двести вторую, а третий — в первую впадину жёсткого колеса. Таким образом, за один полный оборот генератора волн гибкое колесо сместится относительно жёсткого на 2 зуба.

Достоинства и недостатки

Достоинства
  • большое передаточное отношение, при малом количестве деталей (i = 80-320)
  • улучшенные массо-габаритные характеристики по сравнению с обычными зубчатыми передачами
  • высокая кинематическая точность и плавность хода
  • высокая нагрузочная способность
  • передача момента через герметичные стенки
Недостатки
  • высокая напряжённость основных элементов гибкого колеса и генератора волн
  • пониженная крутильная жесткость.

Волновые зубчатые передачи, область применения

Механизмы волновой передачи преобразуют входное вращательное движение в выходное вращательное или поступательное движение. Благодаря вышеописанным достоинствам волновые передачи очень широко применяются в сложных условиях различных областей науки и техники.

  • тяжело нагруженные, грузоподъемные и высокоэффективные силовые механизмы приводов редукторов и мультипликаторов (теплоэнергетическая, строительная, пищевая, медицинская промышленность);
  • запорная арматура магистральных нефтепроводов, нефтегазодобывающая и нефтеперерабатывающая промышленность;
  • тяжелые климатические условия (низкие температуры, высокая влажность воздуха, песчаные бури);
  • герметизированные полости глубокого вакуума или химически агрессивных или радиоактивных сред;
  • химическая и атомная промышленность;
  • авиационная, космическая и подводная техника;
  • следящие системы и системы автоматического управления высокой точности, робототехника.

Заказать волновые зубчатые передачи всех типоразмеров можно в НТЦ «Редуктор».

Показать все контакты

Цилиндрические редукторы

Волновой мотор-редуктор

Описание данного типа волновой передачи можно сделать на основе мотора редуктора модели МВз2-160-5,5. Данная модель обладает сдвоенной волновой зубчатой передачей. Конструкция данного редуктора состоит из гибкого колеса, которое выполнено в виде кольца с тонкими стенками и двумя зубчатыми венцами. Кроме того, в конструкции имеется и общий для этих деталей кулачковый генератор волн, обладающий гибким подшипником.

Также у этой модели есть несколько особенностей, касающихся конструкции редуктора:

  1. Размер вдоль оси вала невелик.
  2. Генератор волн плавающего типа, а соединение с валом электродвигателя шарнирное.
  3. На конце выходного вала этого устройства располагаются прямобочные шлицы.

Этот тип мотора-редуктора может использоваться, как индивидуальный приводной модуль.

Технические параметры мотора-редуктора

Технические параметры для волнового мотора-редуктора — это несколько основных критериев:

  • Первый параметр, которому должен соответствовать редуктор — это крутящийся момент на выходном валу. Он должен составлять — 250 Н⋅м.
  • Второй параметр — это частота вращения вала редуктора. Показатель этого параметра должен быть — 5,5 мин-1.
  • Третий параметр для этого устройства — передаточное отношение. Показатель данного параметра — 264.
  • Коэффициент полезного действия волнового мотора-редуктора должен быть 0,7.
  • Параметры электродвигателя для этой модели следующие: 0,31 кВт мощности, Частота вращения 1450 мин-1, рабочее напряжение для этого механизма 220 В или 380 В.
  • Полный вес устройства составляет 20 кг.

Это основные параметры, которые предъявляются к волновому мотору-редуктору.

Устройство и назначение редуктора

Редуктор — это механизм, который состоит из зубчатых и червячных передач, и выполнен в виде отдельного устройства. Он служит для передачи вращения от вала двигателя к валу рабочего механизма. Основное назначение редуктора это понижение угловой скорости и, вследствие этого увеличение крутящего момента ведомого вала по отношению к ведущему. Есть несколько типов редукторов, можно купить редуктор червячный, цилиндрический редуктор, волновой редуктор, конический угловой редуктор. Все эти виды обусловлены типом передач, на которых построена работа редуктора, или по типу зубчатых колес, это относится к цилиндрическим и коническим редукторам. Кроме того редукторы подразделяются по числу ступеней передачи, существует одноступенчатый редуктор, двухступенчатый редуктор и редукторы с большим ступенчатым числом.

Читайте также:
Вакуумный насос своими руками из компрессора холодильника

Редуктор представляет собой корпус, в который помещены все элементы передачи – валы, зубчатые колеса, подшипники и остальное. Иногда в корпусе редуктора расположены устройства, которые служат для смазки зацепления и подшипников (к примеру, в корпус редуктора может быть размещен шестеренный масляный насос) или охлаждающие устройства (к примеру, змеевик с водой в корпусе червячного двухступенчатого редуктора).

Редукторы проектируются либо для привода конкретного механизма, либо можно купить редуктор, ориентируясь по заданной нагрузке и его передаточному числу без указания конкретного назначения. Так же редукторы подразделяются на горизонтальные и вертикальные, в соответствии с положением вала в пространстве.

Ресурс передач, валов и подшипников редукторов

Наименование показателя Тип редуктора Значение показателя, ч
90%-ный ресурс передач и валов Цилиндрический, конический, коническо-цилиндрический, планетарный 25000
90%-ный ресурс подшипников Червячный, глобоидный, волновой 10000
Цилиндрический, конический, коническо-цилиндрический, планетарный 12500
Червячный 5000
Глобоидный, волновой 10000

Расчеты редуктора

Как и для любой другой детали, для создания редуктора необходимо проводить определенные расчеты, которые будут показывать, способно ли устройство выполнять свои функции, а также из какого материала должно выполняться устройство и т.д. Основным критерием для расчета волнового редуктора, его работоспособности, является прочность гибкого колеса. Оценить данный параметр можно при помощи сопротивления усталости зубчатого венца. Основной габаритный размер передачи — это внутренний диаметр гибкого колеса. Определяется он по приближенной зависимости сопротивления усталости с учетом нормальных напряжений.

Конструктивные особенности редуктора

Конструктивное исполнение – это корпус, внутри которого находятся все элементы передачи – валы, шестерни и подшипники, зубчатые колеса и другие. За счет разницы передаточных чисел сопряженных шестерен, редуктор может снижать скорость вращения выходного вала, относительно скорости входного. Благодаря этому свойству, редуктор активно используется как привод для разных двигателей и механизмов. Универсальность применения, которой обладает редуктор, предопределяет его широкое применение в промышленности.

Для работы, например, конвейера, нужны подшипники и приводные цепи, способные обеспечить движение различных транспортеров и грузовых площадок. Все конвейерные механизмы приводит в движение мотор-редуктор, представляющий собой электродвигатель, конструктивно совмещенный с центральной шестерней редуктора любого типа передачи.

Благодаря тому, что мотор-редуктор имеет простую конструкцию, он не требует постоянного технического обслуживания, а его компактные размеры позволяют закрепить на раму подъемного механизма, не занимая лишнего пространства. В редукторах высокоточного позиционирования, используются радиально-аксиальные подшипники, установленные в композитные положения, обеспечивающие плавное и бесшумное вращение вала. Редукторы разного типа устроены по своему, их валы могут находиться как в одной плоскости, так и под углом друг к другу. От этого зависит производительность редуктора и его передаточное число.

Конструктивные исполнения по способу монтажа

Примеры условных обозначений и изображений:
121 — соосный редуктор, конструктивное исполнение корпуса на лапах, крепление к потолку, валы горизонтальные, выходной вал слева (рис. 1, а);
2231 — редуктор с параллельными осями, исполнение корпуса с фланцем, поверхность крепления перпендикулярна осям валов, креп­ление к левой стене, валы горизонтальные в вертикальной плоскости (рис. 1, б);
3120 — редуктор с пересекающимися ося­ми, исполнение корпуса навесное, поверхность крепления параллельна осям валов, крепление к потолку, валы горизонтальные (рис. 1, в);
4323 — редуктор со скрещивающимися осями, исполнение корпуса насадное, поверх­ность крепления перпендикулярна оси колеса, выходной вал вертикальный, червяк слева от колеса (рис. 1, г).
Символом ///// обозначена точка фиксации изделия от проворота реактивным моментом и крепление полого выходного вала на валу рабо­чей машины.

Как выбрать редуктор?

От выбора редуктора зависит не только его надежность и производительность, но и долговечность. Ошибки при расчете в выборе редуктора могут привести к преждевременному выходу его из строя. Поэтому работу по расчету и выбору редуктора нужно по возможности доверить опытным специалистам-конструкторам, которые учтут все факторы, такие как: расположение редуктора в пространстве, условия его работы, рабочей температуры и предельного в процессе эксплуатации.

Подтвердив все это расчетами, специалист сможет подобрать оптимальный редуктор под конкретный привод. Как показывает практика, правильно подобранный тип редуктора и его передаточное число обеспечивает срок службы механизма не менее 7 лет для червячных редукторов и не меньше 15 лет для цилиндрических редукторов. Иногда нет возможности проконсультироваться у специалиста. Как посчитать передаточное число редуктора самому? Любой расчет редуктора необходимо начать с составления кинематической схемы всего привода — это позволит определить тип редуктора, который необходим для данной системы.

Как определить передаточное число редуктора?

Передаточное число редуктора определяется по общей формуле:

U=nвх/nвых,

где nвх — это количество оборотов входного вала редуктора, то есть обороты электродвигателя, по числу оборотов в минуту, а nвых— это необходимое количество оборотов выходного вала редуктора, оборотов в минуту.

Полученное передаточное число округляется до передаточного числа из типового ряда для данных типов редукторов. Необходимо помнить, что расчет передаточного числа редуктора, таким образом, является довольно приблизительным. А при выборе электродвигателя частота вращения вала всего двигателя, а, значит, и входного вала редуктора не может превышать 1500 оборотов в минуту для редукторов любого типа. Обороты электродвигателя необходимо выбирать исходя из технических характеристик самих электродвигателей и механизмов, для которых они предназначены.

Волновой редуктор: принцип работы, устройство, назначение

С момента создания первой зубчатой передачи прошло много лет. Многие известные инженеры приложили немало усилий для усовершенствования этого процесса и изобретения новых механизмов. Одним из таких людей стал американский инженер У. Массер, который в 1959 году изобрел волновой редуктор. Принцип работы был основан на использовании гибкого зубчатого колеса, передающего движение другой шестерне. Это изобретение позволило ускорить развитие многих отраслей промышленности, увеличить передаточное число и точность оборудования.

Особенности конструкции

Устройство волнового редуктора зависит от сферы его применения. Основная цель, для которой используется этот механизм – преобразование входного вращательного движения двигателей в:

  • выходное поступательное;
  • выходное вращательное.

По своей конструкции они схожи с планетарными механизмами так как имеется несколько зон соприкосновения с гибким колесом. Обеспечивает одновременное соприкосновение кулачок. Он имеет несколько выступов, которые образуют волны при вращении. При этом нагрузка распределена по всем зацепляемым зубьям равномерно. При производстве волновых редукторов количество зубьев на колесах варьируется в пределах от 100 до 600.

Место, где вершина волны деформируемого элемента соприкасаются с другой шестерней, называется зоной зацепления.

По количеству таких зон редуктор с гибким элементом может быть:

  • одноволновый;
  • двухволновый;
  • трехволновый.

Большее количество волн встречается крайне редко.

Читайте также:
Аппарат для изготовления пеноблоков

Принцип работы

Волновые редукторы имеют следующий принцип работы:

  1. Недеформируемое колесо с внутренними зубьями крепится в корпусе.
  2. Гибкое зубчатое колесо с тонкими стенками устанавливается на генератор волн.
  3. При вращении генератор волн деформирует гибкое колесо, тем самым перемещает точки соприкосновения наружной и внутренней шестерней.

Плавность хода обеспечивается тем, что на гибком колесе меньшее количество зубьев.

Типы волновых редукторов

Среди всего многообразия устройств данного вида. наибольшее распространение получили волновые мотор-редукторы. Конструкция такого механизма состоит из электродвигателя и непосредственно самой волновой передачи. Основные характеристики, на которые стоит обращать внимание перед покупкой:

  • размеры;
  • мощность;
  • КПД;
  • максимальная нагрузка.

Преимущества таких устройств перед моторами другого типа:

  • меньшие размеры;
  • низкий уровень шума и вибраций;
  • устойчивость к нагрузкам.

Основной способ смазки таких устройств заключается в стандартном подводе масла к соприкасающимся элементам. Тем не менее, в некоторых ситуациях требуются герметичные механизмы, без использования смазывающе-охлаждающей жидкости. Работа волнового редуктора фланцевого с пневмодвигателем происходит без смазки. В таком аппарате охлаждение элементов происходит при помощи сжатого воздуха.

Червячный волновой редуктор имеет два вида размещения червяка в корпусе – верхнюю и нижнюю. Применение такой механизм нашел в космической отрасли, где требуется герметичность.

Используется в конструкции космической лебедки.

Волновая зубчатая передача появилась относительно недавно, но уже успела зарекомендовать себя с положительной стороны. Она обеспечивает большую волновую деформацию, тем самым увеличивая передаточное отношение. Из достоинств также стоит выделить высокий КПД, небольшие размеры и маленький вес.

Применение волнового редуктора

За ряд особенностей, недоступных другим механизмам такого типа, привод с волновым редуктором получил широкое распространение во многих отраслях промышленности. Такое устройство встречается:

  • в космонавтике и авиастроении;
  • в судостроении и на подводных лодках;
  • в нефтедобывающей и нефтеперерабатывающей отрасли;
  • на химическом производстве;
  • в атомных электростанциях;
  • в робототехнике и автоматизированных системах;
  • при добыче полезных ископаемых.

Герметичность устройства позволяет использовать его в сложных климатических условиях, в вакууме и под водой. Устойчивость к большим нагрузкам и сложным условиям работы нашло применение для этих аппаратов в атомной энергетике и местах с возможностью взрывов и землетрясений. Точность передаваемых движений позволяет использовать их в станках с числовым программным управлением. Высокий запас прочности и длительный срок эксплуатации позволяет использовать редуктор в любом производстве, внедрить его в технологический процесс, задействовать в работе конвейера, автоматизированных систем и другом оборудовании.

Простая конструкция позволяет собрать такой механизм своими руками, но, если цели использования предполагают применение редуктора в сложном технологическом процессе, стоит приобрести профессиональное оборудование. Его стоимость окажется существенно выше, но производитель дает гарантию на оборудование и выполнение им всех поставленных задач.

Волновые редукторы имеют множество преимуществ, за которые нашли повсеместное применение. Они обладают высоким коэффициентом полезного действия, множеством вариантов передаточных чисел, небольшими размерами, высокой точностью и плавной работой движущихся элементов. Высокая стоимость таких устройств в сравнении с другими редукторами, окупается в длительном сроке эксплуатации и недорогом обслуживании.

Волновой редуктор своими руками

Внешняя х&рапкер-‘сяика дб с. V’t.5 см 1 .Стрит.’

Он экономичен, у него эффективный малогабаритный глушитель шума кольцевого типа.

Оба варианта двигателя будут выпускаться как с постоянной футеровкой, так и с системой регулировки газа. В комплекте имеется воздушный винт.

Технические данные «Стрижа»

Технические данные «Стрижа»

Вариант с калильной свечой

Вес (с глушителем,

Вес (с глушителем, с

Рекомендуемые топливные смеси:

Намечен выпуск в 1975 году в тех же вариантах, что и «Сокол».

Двигатель «Стриж» устанавливается на всех видах авиа-, авто- и судомоделей, моделях-копиях аэросаней, глиссеров, подъемных кранов и игрушках. «Стриж» хорошо запускается. Он имеет очень мягкую внешнюю характеристику. Диапазон устойчивой работы двигателя 300-:-16 500 об/мни.

ВОЛНОВОЙ РЕДУКТОР В МОДЕЛЯХ И ИГРУШКАХ

Волновой редуктор изобретен сравнительно недавно — в 1959 году. Несмотря на свою «молодость», он занял прочное место в различных областях техники. Без волнового редуктора уже немыслимы многие машины и механизмы. Редукторы с волновым зацеплением применяются в современных точных станках, приборах, отсчетных механизмах и даже в луноходе.

До недавних пор считалось нецелесообразным использование волнового редуктора в моделях и игрушках. Предполагалось, что волновой редуктор малых габаритов неэкономичен, а детали его требуют высокой точности изготовления.

Сегодня эта проблема уже решена. Простая конструкция, обыкновенные пластмассовые детали (их не более 6— 7 штук) — таков волновой редуктор, созданный в отделе новых изделий ЦКТБИ.

На рисунке приведен общий вид волновой передачи. Передача состоит из микродвигателя 1, на валу которого жестко закреплен ведущий ролик 2, находящийся во фрикционном зацеплении с роликами 3 (они называются генератором волн]. Генератор волн деформирует гибкую шестерню 4, зубья которой входят в зацепление с зубьями жесткой шестерни 5. Последняя одновременно является корпусом редуктора.

При вращении вала двигателя 1 с роликом 2 начинают вращаться ролики 3. Они вращаются вокруг своих осей и вокруг оси ролика 2, передавая волновую деформацию гибкой шестерне 4, последовательно вводя в зацепление с зубь-

Волновой редуктор: принцип работы, устройство, назначение

С момента создания первой зубчатой передачи прошло много лет. Многие известные инженеры приложили немало усилий для усовершенствования этого процесса и изобретения новых механизмов. Одним из таких людей стал американский инженер У. Массер, который в 1959 году изобрел волновой редуктор. Принцип работы был основан на использовании гибкого зубчатого колеса, передающего движение другой шестерне. Это изобретение позволило ускорить развитие многих отраслей промышленности, увеличить передаточное число и точность оборудования.

Особенности конструкции

Устройство волнового редуктора зависит от сферы его применения. Основная цель, для которой используется этот механизм – преобразование входного вращательного движения двигателей в:

  • выходное поступательное;
  • выходное вращательное.

По своей конструкции они схожи с планетарными механизмами так как имеется несколько зон соприкосновения с гибким колесом. Обеспечивает одновременное соприкосновение кулачок. Он имеет несколько выступов, которые образуют волны при вращении. При этом нагрузка распределена по всем зацепляемым зубьям равномерно. При производстве волновых редукторов количество зубьев на колесах варьируется в пределах от 100 до 600.

Место, где вершина волны деформируемого элемента соприкасаются с другой шестерней, называется зоной зацепления.

По количеству таких зон редуктор с гибким элементом может быть:

Большее количество волн встречается крайне редко.

Принцип работы

Волновые редукторы имеют следующий принцип работы:

  1. Недеформируемое колесо с внутренними зубьями крепится в корпусе.
  2. Гибкое зубчатое колесо с тонкими стенками устанавливается на генератор волн.
  3. При вращении генератор волн деформирует гибкое колесо, тем самым перемещает точки соприкосновения наружной и внутренней шестерней.

Плавность хода обеспечивается тем, что на гибком колесе меньшее количество зубьев.

Читайте также:
Блок для лебедки своими руками

Типы волновых редукторов

Среди всего многообразия устройств данного вида. наибольшее распространение получили волновые мотор-редукторы. Конструкция такого механизма состоит из электродвигателя и непосредственно самой волновой передачи. Основные характеристики, на которые стоит обращать внимание перед покупкой:

  • размеры;
  • мощность;
  • КПД;
  • максимальная нагрузка.

Преимущества таких устройств перед моторами другого типа:

  • меньшие размеры;
  • низкий уровень шума и вибраций;
  • устойчивость к нагрузкам.

Основной способ смазки таких устройств заключается в стандартном подводе масла к соприкасающимся элементам. Тем не менее, в некоторых ситуациях требуются герметичные механизмы, без использования смазывающе-охлаждающей жидкости. Работа волнового редуктора фланцевого с пневмодвигателем происходит без смазки. В таком аппарате охлаждение элементов происходит при помощи сжатого воздуха.

Червячный волновой редуктор имеет два вида размещения червяка в корпусе – верхнюю и нижнюю. Применение такой механизм нашел в космической отрасли, где требуется герметичность.

Используется в конструкции космической лебедки.

Волновая зубчатая передача появилась относительно недавно, но уже успела зарекомендовать себя с положительной стороны. Она обеспечивает большую волновую деформацию, тем самым увеличивая передаточное отношение. Из достоинств также стоит выделить высокий КПД, небольшие размеры и маленький вес.

Применение волнового редуктора

За ряд особенностей, недоступных другим механизмам такого типа, привод с волновым редуктором получил широкое распространение во многих отраслях промышленности. Такое устройство встречается:

  • в космонавтике и авиастроении;
  • в судостроении и на подводных лодках;
  • в нефтедобывающей и нефтеперерабатывающей отрасли;
  • на химическом производстве;
  • в атомных электростанциях;
  • в робототехнике и автоматизированных системах;
  • при добыче полезных ископаемых.

Герметичность устройства позволяет использовать его в сложных климатических условиях, в вакууме и под водой. Устойчивость к большим нагрузкам и сложным условиям работы нашло применение для этих аппаратов в атомной энергетике и местах с возможностью взрывов и землетрясений. Точность передаваемых движений позволяет использовать их в станках с числовым программным управлением. Высокий запас прочности и длительный срок эксплуатации позволяет использовать редуктор в любом производстве, внедрить его в технологический процесс, задействовать в работе конвейера, автоматизированных систем и другом оборудовании.

Простая конструкция позволяет собрать такой механизм своими руками, но, если цели использования предполагают применение редуктора в сложном технологическом процессе, стоит приобрести профессиональное оборудование. Его стоимость окажется существенно выше, но производитель дает гарантию на оборудование и выполнение им всех поставленных задач.

Волновые редукторы имеют множество преимуществ, за которые нашли повсеместное применение. Они обладают высоким коэффициентом полезного действия, множеством вариантов передаточных чисел, небольшими размерами, высокой точностью и плавной работой движущихся элементов. Высокая стоимость таких устройств в сравнении с другими редукторами, окупается в длительном сроке эксплуатации и недорогом обслуживании.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Волновые редукторы российского производства компании Сервосила

Компания Сервосила наладила производство миниатюрных волновых редукторов, — впервые в современной России. Можно сказать, что с распадом Советского Союза технология производства волновых редукторов была утеряна. Усилиями конструкторов и технологов компании Сервосила, российского производителя и экспортера робототехники, был восстановлен этот пробел. Уже третий год компания Сервосила обеспечивает себя и своих партнеров миниатюрными волновыми редукторами .

Волновой редуктор — загадочная штука. Даже просто понять принцип его работы большинству людей удается не сразу. А в технологии его изготовления и методиках расчета скрыто множество подводных камней.

Компания Сервосила — это отечественный производитель мобильных роботов и сервоприводов. Волновые редукторы широко применяются в робототехнике , так как обеспечивают минимальную массу и минимальный люфт при заданном коэффициенте редукции. Изначально Сервосила закупала волновые редукторы за рубежом, что негативно сказывалось на себестоимости продукции. Благодаря освоению производства волновых редукторов, удалось не только снизить себестоимость, но и значительно улучшить компоновку и технологичность выпускаемой продукции, в том числе сервоприводов . Также волновые редукторы применяются в станкостроении и авиации.

Волновые редукторы отличает малая масса при заданном коэффициенте редукции, а также малый люфт. По сравнению с планетарными редукторами, выигрыш по массе может составлять 1.5-2 раза. Также волновые редукторы отличает компактность формы и малые размеры.

Малая масса и компактная форма важны во многих областях, таких как робототехника и авиация. У волновых редукторов также малый люфт, что очень важно в точных электромеханических системах, таких как сервоприводы манипуляторов роботов или систем позиционирования.

Волновые зубчатые передачи

Волновые зубчатые передачи создана в 1959 году У. Массером.

Принцип работы волновых передач ( для просмотра анимации нажмите на рисунок)

Структурно она схожа с планетарной, но принципиально отличается по способу передачи движения путем волнового деформирования зубчатого колеса.

Волновые зубчатые передачи, принцип работы

По конструкции такие передачи имеют различные вариации. Обязательными составляющими конструкции волновой зубчатой передачи служат:

  • жесткое зубчатое колесо (1) с внутренними зубьями;
  • тонкостенное гибкое зубчатое колесо (2) с наружными зубьями;
  • генератор волн или волнообразователь (Н);

Жесткое колесо неподвижно закрепляют в корпусе. Волнообразователь растягивает колесо (1) и заставляет его вращаться по внутреннему зацеплению жесткого колеса (2) в противоположном вращательному движению направлении. Образование пар зацепления зубчатых колес осущетвояетсяв двух и более точках. Смещение гибкого колеса по отношению к жесткому происходит на определенное количество зубьев. Разница количества зубьев этих колес равна количеству волн деформации.

Волновые зубчатые передачи, преимущества

  • большие передаточные числа (диапазон от 40 до 320);
  • высокий КПД (0.8 – 0.9);
  • высокий крутящий момент на выходе;
  • передача движения сквозь герметичную перегородку не требующая дополнительных уплотнений;
  • компактность и малогабаритность (в несколько раз меньше зубчатых передач);
  • высокая нагрузочная способность при небольших габаритах и массе;
  • плавность хода и низкий уровень шума во время работы;
  • много парность и многозонность зацепления обеспечивают малую кинематическую погрешность и высокую жесткость механизма;
  • малая вибрация и погрешности при изготовлении и монтаже;
  • высокая надежность и продолжительность срока службы (до 15 лет) из-за простоты, прочности и симметричности конструкции;
  • высокая износостойкость благодаря отсутствию трения скольжения;
  • минимальные затраты на техническое обслуживание (благодаря применению пластичной смазки контроль за уровнем смазки не требуется);
  • быстрый запуски торможение механизмов благодаря малой инерции и высокой динамичности.

Волновые зубчатые передачи, область применения

Механизмы волновой передачи преобразуют входное вращательное движение в выходное вращательное или поступательное движение. Благодаря вышеописанным достоинствам волновые передачи очень широко применяются в сложных условиях различных областей науки и техники.

  • тяжело нагруженные, грузоподъемные и высокоэффективные силовые механизмы приводов редукторов и мультипликаторов (теплоэнергетическая, строительная, пищевая, медицинская промышленность);
  • запорная арматура магистральных нефтепроводов, нефтегазодобывающая и нефтеперерабатывающая промышленность;
  • тяжелые климатические условия (низкие температуры, высокая влажность воздуха, песчаные бури);
  • герметизированные полости глубокого вакуума или химически агрессивных или радиоактивных сред;
  • химическая и атомная промышленность;
  • авиационная, космическая и подводная техника;
  • следящие системы и системы автоматического управления высокой точности, робототехника.
Читайте также:
ГОСТ на металлические трубы круглого сечения

Заказать волновые зубчатые передачи всех типоразмеров можно в НТЦ «Редуктор».

Для информации или оформления заказа позвоните по многоканальному номеру 8(812)777-8900 или заполните форму ниже.

Волновой редуктор с дисковым генератором волн

МГТУ им Баумана
Кафедра Машиностроительные технологии
Курсовой проект по курсу «Детали машин»
Тема «Волновой редуктор с дисковым генератором волн»
Москва 2014

Разработка волнового редуктора с дисковым генератором волн
Содержит 5 листов А1, спецификацию и РПЗ. Волновая передача основана на принципе преобразования параметров движения за счет волнового деформирования гибкого звена механизма. При волновом деформировании гибкого колеса всем его точкам сообщаются окружные скорости. При контакте гибкого колеса с жестким по вершинам волн окружные скорости волновых перемещений сообщаются жесткому колесу, как ведомому звену передаточного механизма.
Преимущества ВЗП: по сравнению с другими зубчатыми передачами определяет многопарность зацепления; малые масса и габариты; большое передаточное отношение; высокая кинематическая точность, малый мертвый ход; плавность и малошумность в работе.
Недостатки ВЗП: мелкие модули зацепления (0,15..2 мм) снижают прочность и износостойкость зубьев; сложность изготовления гибких колес; ограниченные частоты вращения генератора волн из-за возникновения вибраций в передаче и снижения ресурса подшипников генератора.

Основные параметры.
1. Вращающий момент на тихоходном валу ТТ = 576.3 Н∙м
2. Частота вращения тихоходного вала n = 22.5 мин
3. Электродвигатель АИР- 80В2
4. Передаточное отношение UP = 117.5
5. Степень точности изготовления передчи 7С
6. Коэффициент полезного действия 0,76
7. Радиальная консольная сила на тихоходном валу не более F=3000 Н.

Состав: Чертеж общего вида, сборочный чертеж, деталировки, спецификация, РПЗ

Редуктор волновой характеристики – принцип работы, устройство, применение, типы

Волновой редуктор представляет собой механическую передачу, которая преобразует энергию деформации гибкого элемента в движение. Редуктор данного типа впервые был построен в 1959 году американским изобретателем Массером. Открытие стало новым этапом в развитии инженерной техники. Волновая передача позволила обеспечивать недостижимый до того момента уровень кинематической точности и невероятную плавность движения.

Также с ней можно было добиваться высокого передаточного отношения при небольшом количестве составных деталей. Сейчас подобные механизмы используются в ракетной и авиационной отраслях, в робототехнике, в точном машиностроении, а также при производстве манипуляторов, от которых требуется высокая точность перемещения.

принцип работы, устройство, применение, типы

С момента создания первой зубчатой передачи прошло много лет. Многие известные инженеры приложили немало усилий для усовершенствования этого процесса и изобретения новых механизмов. Одним из таких людей стал американский инженер У. Массер, который в 1959 году изобрел волновой редуктор. Принцип работы был основан на использовании гибкого зубчатого колеса, передающего движение другой шестерне. Это изобретение позволило ускорить развитие многих отраслей промышленности, увеличить передаточное число и точность оборудования.

Особенности конструкции

Устройство волнового редуктора зависит от сферы его применения. Основная цель, для которой используется этот механизм – преобразование входного вращательного движения двигателей в:

  • выходное поступательное;
  • выходное вращательное.

По своей конструкции они схожи с планетарными механизмами так как имеется несколько зон соприкосновения с гибким колесом. Обеспечивает одновременное соприкосновение кулачок. Он имеет несколько выступов, которые образуют волны при вращении. При этом нагрузка распределена по всем зацепляемым зубьям равномерно. При производстве волновых редукторов количество зубьев на колесах варьируется в пределах от 100 до 600.

Место, где вершина волны деформируемого элемента соприкасаются с другой шестерней, называется зоной зацепления.

По количеству таких зон редуктор с гибким элементом может быть:

  • одноволновый;
  • двухволновый;
  • трехволновый.

Большее количество волн встречается крайне редко.

Принцип работы

Волновые редукторы имеют следующий принцип работы:

  1. Недеформируемое колесо с внутренними зубьями крепится в корпусе.
  2. Гибкое зубчатое колесо с тонкими стенками устанавливается на генератор волн.
  3. При вращении генератор волн деформирует гибкое колесо, тем самым перемещает точки соприкосновения наружной и внутренней шестерней.

Плавность хода обеспечивается тем, что на гибком колесе меньшее количество зубьев.

Типы волновых редукторов

Среди всего многообразия устройств данного вида. наибольшее распространение получили волновые мотор-редукторы. Конструкция такого механизма состоит из электродвигателя и непосредственно самой волновой передачи. Основные характеристики, на которые стоит обращать внимание перед покупкой:

  • размеры;
  • мощность;
  • КПД;
  • максимальная нагрузка.

Преимущества таких устройств перед моторами другого типа:

  • меньшие размеры;
  • низкий уровень шума и вибраций;
  • устойчивость к нагрузкам.

Основной способ смазки таких устройств заключается в стандартном подводе масла к соприкасающимся элементам. Тем не менее, в некоторых ситуациях требуются герметичные механизмы, без использования смазывающе-охлаждающей жидкости. Работа волнового редуктора фланцевого с пневмодвигателем происходит без смазки. В таком аппарате охлаждение элементов происходит при помощи сжатого воздуха.

Червячный волновой редуктор имеет два вида размещения червяка в корпусе – верхнюю и нижнюю. Применение такой механизм нашел в космической отрасли, где требуется герметичность.

Используется в конструкции космической лебедки.

Волновая зубчатая передача появилась относительно недавно, но уже успела зарекомендовать себя с положительной стороны. Она обеспечивает большую волновую деформацию, тем самым увеличивая передаточное отношение. Из достоинств также стоит выделить высокий КПД, небольшие размеры и маленький вес.

Применение волнового редуктора

За ряд особенностей, недоступных другим механизмам такого типа, привод с волновым редуктором получил широкое распространение во многих отраслях промышленности. Такое устройство встречается:

  • в космонавтике и авиастроении;
  • в судостроении и на подводных лодках;
  • в нефтедобывающей и нефтеперерабатывающей отрасли;
  • на химическом производстве;
  • в атомных электростанциях;
  • в робототехнике и автоматизированных системах;
  • при добыче полезных ископаемых.

Герметичность устройства позволяет использовать его в сложных климатических условиях, в вакууме и под водой. Устойчивость к большим нагрузкам и сложным условиям работы нашло применение для этих аппаратов в атомной энергетике и местах с возможностью взрывов и землетрясений. Точность передаваемых движений позволяет использовать их в станках с числовым программным управлением. Высокий запас прочности и длительный срок эксплуатации позволяет использовать редуктор в любом производстве, внедрить его в технологический процесс, задействовать в работе конвейера, автоматизированных систем и другом оборудовании.

Простая конструкция позволяет собрать такой механизм своими руками, но, если цели использования предполагают применение редуктора в сложном технологическом процессе, стоит приобрести профессиональное оборудование. Его стоимость окажется существенно выше, но производитель дает гарантию на оборудование и выполнение им всех поставленных задач.

Волновые редукторы имеют множество преимуществ, за которые нашли повсеместное применение. Они обладают высоким коэффициентом полезного действия, множеством вариантов передаточных чисел, небольшими размерами, высокой точностью и плавной работой движущихся элементов. Высокая стоимость таких устройств в сравнении с другими редукторами, окупается в длительном сроке эксплуатации и недорогом обслуживании.

Читайте также:
Бензорез по металлу своими руками

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Зубчатая передача

Не так давно инженерами был создан новый вид зубчатой передачи, которая по своим параметрам, а также конструкции схожа с планетарной передачей, однако при этом обладает принципиально новой передачей вращения. Эти новые изобретения – волновые зубчатые редукторы. Для того чтобы передавать вращательное движение в этих устройствах, была достигнута волновая бегущая деформация, которой поддается одно из зубчатых колес редуктора. Данное изобретение отлично зарекомендовало себя в некоторого вида следящих системах, а также в системах автоматического управления с высоким требованием к точности. Такое специфическое предназначение эти редукторы получили из-за своих характеристик: небольшой физический вес, а также малые размеры всего устройства в целом, которое при этом обладает большим показателем передаточного отношения, характеризуется более высоким коэффициентом полезного действия, то есть КПД, небольшими люфтами, а также малым износом деталей редуктора. Именно эти параметры и стали решающими в определении цели работы для волновых зубчатых редукторов.



Волновые редукторы. | PRO-TechInfo

Назначение и принцип работы волновых передач.

Волновые передачи основаны на принципе передачи вращательного движения за счет бегущей волновой деформации одного из зубчатых колес.

Такая передача была запатентована американским инженером Массером в 1959 г.

Волновые передачи имеют меньшие массу и габариты, большую кинематическую точность, меньший мёртвый ход, высокую вибропрочность за счёт демпфирования (рассеяния энергии) колебаний, создают меньший шум.

При необходимости такие передачи позволяют передавать движение в герметичное пространство без применения уплотняющих сальников, что особенно ценно для авиационной, космической и подводной техники, а также для машин химической промышленности.

Кинематически эти передачи представляют собой разновидность плане­тарной передачи с одним гибким зубчатым колесом.

Основные элементы волновой передачи:

  • неподвижное колесо с внут­ренними зубьями,
  • вращающееся упругое колесо с наружными зубьями,
  • водило.

Неподвижное колесо закрепляется в корпусе и выполняется в виде обычного зубчатого колеса с внутренним зацеплением. Гибкое зубча­тое колесо имеет форму стакана с легко деформирующейся тонкой стенкой: в утолщенной части (левой) нарезаются зубья, правая часть имеет форму вала. Водило состоит из овального кулачка и специального подшипника.

Передача движения осуществляется за счет деформирования зубчатого венца гибкого колеса. При вращении водила волна деформации бежит по окружности гибкого зубчатого венца; при этом венец обкатывается по не­подвижному жесткому колесу в обратном направлении, вращая стакан и вал. Поэтому передача и называется волновой, а водило — волновым генератором.

Конструкции волновых редукторов.

Существует большое количество конструкций волновых механизмов. Обычно эти механизмы преобразуют входное вращательное движение в выходное вращательное или поступательное. Волновые механизмы можно рассматривать как одну из разновидностей многопоточных планетарных механизмов, так как они обладают многозонным, а в случае зубчатого механизма, и многопарным контактом выходного звена с гибким колесом. Многозонный контакт обеспечивается за счет формы генератора волн (кулачок чаще с двумя, редко с тремя выступами), многопарный — за счет податливости зубчатого венца гибкого колеса. Такое сочетание позволяет волновым механизмам передавать значительные нагрузки при малых габаритах. Податливость зубчатого венца обеспечивает достаточно равномерное распределение нагрузки по зубьям, находящимся в зоне зацепления. При номинальных нагрузках процент зубьев находящихся в зацеплении составляет 15-25% от общего их числа. Поэтому в волновых передачах применяется мелкомодульное зацепление, а числа зубьев колес лежат в пределах от 100 до 600. Зона зацепления в волновой зубчатой передаче совпадает с вершиной волны деформации. По числу зон или волн передачи делятся на одноволновые, двухволновые и так далее. При вращении водила овальной формы образуются две волны. Такую передачу называют двухволновой. Бывают трехволновые передачи. Передачи с числом волн более трех применяются редко.

Конструкция редукторов: варианты

По конструкции все поставляемые волновые редукторы можно разделить на несколько групп. Самые простые по конструкции редукторы — это установочные комплекты. Они представляют собой три основных детали редуктора, пригнанные друг к другу, но не собранные в единое изделие. Подшипники в такой комплектации отсутствуют и при интеграции такого редуктора в конечное изделие можно установить именно те подшипники, которые наиболее подходят для конкретного применения. Такая возможность может дать преимущество в случае, когда подшипники стандартных готовых редукторов не устраивают по тем или иным параметрам. Вал в такой комплектации также отсутствует (ни полого, ни сплошного вала просто нет). Некоторые серии установочных комплектов снабжаются кулачково-дисковой муфтой на генераторе волны для компенсации несоосности вала. Легко видеть, что такая конструкция даёт большую гибкость в проектировании конечной системы и позволяет оптимально состыковать волновой редуктор с остальной частью системы.

Вторая группа по конструктивному исполнению — редукторы в исполнении модуль. Эти редукторы представляют собой полностью собранные изделия с установленными подшипниками, дополнительными корпусными деталями и часто с установленным валом — полым или сплошным. Несмотря на то, что полностью собранные изделия не дают такой же гибкости в построении системы, как и установочные комплекты, использование их упрощает конструирование за счёт отсутствия необходимости установки подшипников и вала. Ещё одна особенность этого конструктивного исполнения — отсутствие сплошного наружного корпуса у редуктора.

Третья группа по конструктивному исполнению — корпусированные редукторы. Они, так же как и модули, представляют собой полностью собранные изделия, однако в отличие от них имеют наружный корпус. Корпусные редукторы всегда снабжаются подшипниками, входным и часто входным валом. Полый вал в таких редукторах в настоящее время отсутствует.

Редуктор волновой с эвольвентным профилем зубьев.

Описание конструкции волнового редуктора.

Редуктор волновой с эвольвентным профилем зубьев — это одноступенчатый редуктор с двумя зубчатыми колесами: одно — жесткое с внутренними зубьями, второе — гибкое — в виде цилиндра с зубчатым венцом. Гибкий зубчатый венец деформируется генератором волн. Генератор состоит из кулачка, насаженного на быстроходный вал, и шарикоподшипника с тонкими кольцами. Недеформируемый конец гибкого цилиндра шлицевый. Шлицы нарезаны обычным зуборезным инструментом. От осевого смещения цилиндр удерживается проволочным кольцом, расположенным на шлицах.

Тихоходный вал вращается в противоположном направлении относительно быстроходного вала.

Сборка жесткого колеса с гибким осуществляется после деформации гибкого зубчатого венца генератором. Зацепление и подшипники смазываются маслом, разбрызгиваемым генератором. Охлаждается редуктор вентилятором, установленным на быстроходном валу.

Редуктор предназначен для непрерывной длительной работы. КПД редуктора 0,85…0,9. Возможна передача вращения от тихоходного вала к быстроходному, КПД мультипликатора на 15…30% ниже КПД редуктора.

Волновая зубчатая передача.

Устройство волнового редуктора

В состав волнового редуктора входят три основных части: генератор волны, жёсткое колесо и гибкое колесо. Генератор волны в самом распространённом варианте выполняется в виде шарикоподшипника с тонкими гибкими стенками. Он устанавливается на эллиптическую втулку, и сам принимает форму эллипса. Сборка из этих двух деталей и является генератором волны. Гибкое колесо – это деталь специфическая для волнового редуктора. Оно представляет собой тонкостенное зубчатое колесо с наружным зубом. Основная рабочая поверхность этого колеса имеет форму цилиндра. Материал и толщина гибкого колеса подобраны так, чтобы оно могло постоянно испытывать упругие деформации, не теряя своих свойств. Конструкция жёсткого колеса проще чем других частей волнового редуктора. Это обычное зубчатое колесо с внутренним зубом. Его размеры подобраны так чтобы обеспечивать достаточно большую жёсткость при рабочих нагрузках.

Читайте также:
Гибкие дымоходы гофры из нержавеющей стали
генератор волны гибкое колесо жесткое колесо

При сборке волнового редуктора гибкое колесо устанавливают на генератор волны, в результате чего оно тоже принимает эллиптическую форму. Далее на гибкое колесо устанавливается жёсткое колесо. Поскольку гибкое колесо в процессе сборки приняло эллиптическую форму, то его зацепление с жёстким колесом происходит только на двух участках. Расположены они вдоль большой полуоси генератора волны и в сумме занимают около 40% окружности. За пределами этих участков зацепления зубьев жёсткого и гибкого колеса не происходит. Гибкое колесо имеет меньше зубьев чем жёсткое колесо. Чаще всего эта разница составляет 2 зуба, однако есть другие варианты конструкции волновых редукторов, где эта разница больше.

Волновые зубчатые передачи

Общие сведения о волновых передачах

Волновой называют передачу, в которой вращение передается за счет волны деформации упругого гибкого звена. Основное применение имеют зубчатые волновые передачи с механическими передачами волн и цилиндрическими колесами. Кроме зубчатых, бывают еще волновые передачи с промежуточными телами качения, в которых тела качения подшипника принимают непосредственное участие в передаче движения, а также фрикционные волновые передачи. Волновая передача была изобретена относительно недавно – в 1959 году американским инженером У. Массером.

Волновая передача (рис. 1) состоит из трех кинематических звеньев: вращающегося гибкого колеса 1 с наружными зубьями, неподвижного жесткого колеса 2 с внутренними зубьями и вращающегося генератора волн Н.

Гибкое колесо выполняют в виде упругого тонкостенного цилиндра, на кольцевом утолщении (венце) которого нарезаны эвольвентные зубья. Длина цилиндра близка к его диаметру. Гибкое колесо соединяют с тихоходным валом передачи.

Жесткое колесо – обычное зубчатое колесо – соединено с корпусом. Число зубьев z2 жесткого колеса больше числа зубьев z1 гибкого колеса.

Генератор волн, представляющий собой водило, состоит из овального кулачка и напрессованного на него специального гибкого шарикоподшипника. При сборке деформированное гибкое колесо вставляют в генератор волн, придающий колесу овальную форму, и вводят в зацепление с жестким колесом.

Гибкое колесо деформируется так, что на концах большой оси овала зубья его зацепляются с зубьями жесткого колеса на полную рабочую высоту, образуя две зоны зацепления (рис. 1). На малой оси зубья колес не зацепляются, их вершины расположены друг напротив друга. Между этими участками зацепление частичное. Как видно из рис. 1, волновая передача может обеспечить одновременное зацепление большого числа зубьев.

При вращении каждая точка венца гибкого колеса имеет радиальную деформацию: по большой оси овала удаляясь от центра, по малой – приближаясь к нему. Совокупность всех перемещений на угле π радиан образует волну деформаций, а на угле 2π – две волны. Такую передачу называют двухволновой.

При вращении генератора волна деформации бежит по окружности гибкого зубчатого венца; при этом венец обкатывается по неподвижному жесткому колесу в сторону, обратную вращению генератора, вращая выходной вал (см. стрелки на рис. 1).

Принцип работы волновой зубчатой передачи наглядно показан на небольшом видеоролике внизу страницы.

В волновой передаче, как и в планетарной, неподвижным может быть любое звено. Например, для передачи движения через герметичную стенку в химической, авиационной, космической, атомной и других отраслях техники применяют волновую передачу с неподвижным гибким колесом (рис. 2). Здесь гибкий зубчатый венец расположен в середине глухого стакана 1, герметично соединенного с корпусом. Движение передается от генератора волн Н к жесткому колесу 2, соединенному с выходным валом.

Достоинства и недостатки волновых передач

К достоинствам волновых передач можно отнести следующие их свойства:

  • способность передавать большие нагрузки при малых габаритах и массе, поскольку в зацеплении одновременно находится до трети всех зубьев;
  • возможность передачи движения в герметизированное пространство без применения дополнительных уплотнений;
  • возможность получения большого передаточного числа при сравнительно высоком КПД. Так, для одноступенчатой передачи с передаточным числом u ≤ 320 КПД составляет η = 0,8…0,9, что выше, чем у червячных передач с такими же параметрами;
  • малая кинематическая погрешность вследствие двухзонности и многопарности зацепления;
  • небольшие нагрузки на валы и опоры вследствие симметричности конструкции;
  • относительно низкий уровень шума и плавность хода во время работы.

Недостатки волновых передач:

  • сложность изготовления гибкого колеса и генератора;
  • ограничение частоты вращения вала генератора при больших диаметрах колес (во избежание больших окружных скоростей в ободе генератора);
  • высокая напряжённость основных элементов гибкого колеса и генератора волн;
  • появление вибрации при работе передачи.

Область применения волновых передач

Волновые передачи применяют в промышленных роботах и манипуляторах, в механизмах с большим передаточным числом, а также в устройствах с повышенными требованиями к кинематической точности и герметичности. Широко применяются волновые передачи в авиационной и космической технике, в приводах грузоподъёмных машин, станков, конвейеров и др. Существуют герметичные волновые передачи, передающие вращение в объем с химически агрессивной или радиоактивной средой, а также работающие в глубоком вакууме.

Основные элементы конструкции волновых передач

Гибкое колесо волновой передачи

Гибкое колесо (рис. 3) выполняют в виде тонкостенного стакана с гибким дном и фланцем для присоединения к валу ( исполнение I ) или с шлицевым присоединением к валу ( исполнение II ). Шлицевое соединение, обеспечивая осевую подвижность, уменьшает напряжения в гибком колесе. Осевая податливость в варианте I обеспечивается тонким дном (этому способствуют отверстия в дне и минимально необходимые для присоединения к валу размеры фланца d ). Применяют также сварные соединения цилиндра с гибким дном.

Чтобы избежать задевания вершин зубьев колес (интерференции) при входе в зацепление под нагрузкой, в большинстве случаев зубья гибкого колеса нарезают с уменьшенной высотой ножки. При этом получаются зубья с широкой впадиной, что повышает гибкость обода колеса, уменьшает напряжения в нем, увеличивает число пар зубьев в зацеплении.

Принцип работы

По мере поворота генератора волны, зубья гибкого и жёсткого колёс поочерёдно начинают входить в зацепление. Участки зацепления зубьев в результате начинают смещаться в том же направлении в котором вращается генератор волны. Как только генератор волны совершит полный оборот, гибкое и жёсткое колесо окажутся смещены друг относительно друга на те самые 2 зуба, которые составляют разницу в количестве зубьев между этими колёсами. Это означает что гибкое и жёсткое колеса повернулись друг относительно друга со скоростью, существенно меньшей чем скорость с которой вращался генератор волны. Генератор волны вращаясь достаточно быстро позволяет получить сравнительно медленное вращение гибкого колеса относительно жёсткого – то есть механизм работает как редуктор. Коэффициент редукции такого волнового редуктора зависит от разницы зубьев между гибким и жёстким кольцом, а также от количества зубьев у жёсткого кольца.

Читайте также:
Аммиачный холодильник своими руками

Особенности конструкции

Устройство волнового редуктора зависит от сферы его применения. Основная цель, для которой используется этот механизм – преобразование входного вращательного движения двигателей в:

По своей конструкции они схожи с планетарными механизмами так как имеется несколько зон соприкосновения с гибким колесом. Обеспечивает одновременное соприкосновение кулачок. Он имеет несколько выступов, которые образуют волны при вращении. При этом нагрузка распределена по всем зацепляемым зубьям равномерно. При производстве волновых редукторов количество зубьев на колесах варьируется в пределах от 100 до 600.

Место, где вершина волны деформируемого элемента соприкасаются с другой шестерней, называется зоной зацепления.

По количеству таких зон редуктор с гибким элементом может быть:

Большее количество волн встречается крайне редко.

Варианты включения

Когда волновой редуктор используется так как показано выше, то генератор волны используется как вход, гибкое колесо – это выход, а жёсткое колесо остаётся неподвижным. Волновой редуктор можно использовать и по-другому, если зафиксировать не жёсткое колесо, а генератор волны или гибкое колесо; входом и выходом в таком случае могут быть из двух оставшихся элементов редуктора. При различных вариантах включения волновая передача может быть использована как для понижения скорости, так и для её повышения. Передаточное число редуктора при этом также изменится. Может измениться и направление вращения выходного элемента относительно входного.

У волнового редуктора можно приводить во вращение все три элемента. Редуктор при этом будет иметь два входа и один выход или один вход и два выхода. Это позволяет использовать волновой редуктор как дифференциал, складывая скорости вращения на разных валах, или раскладывая вращение на два разных вала.

Варианты исполнения компактных волновых редукторов

За время, прошедшее с момента изобретения волнового редуктора, было придумано много вариантов его конструкции. И вариант, когда шарикоподшипник эллиптической формы используется как генератор волны, не исчерпывает всех возможных вариантов конструкции. Существуют и другие варианты. Например, генератор волны может быть выполнен в виде коромысла с роликами на его концах. Или в виде планетарных шестерён, установленных на водило, которые зацепляются с зубьями, сделанными с внутренней стороны гибкого колеса. Помимо этого, генератор волны может быть выполнен в виде детали более сложной формы, создающей на гибком кольце 3 или 4 зоны зацепления (вместо двух зон в самом простом случае).

Гибкое колесо также может иметь разную форму. На практике чаще всего встречаются три формы: «кастрюля», «шляпа» и цилиндр. Отличия между ними заключаются в удобстве использования.

Гибкое колесо типа «кастрюля» Гибкое колесо типа «цилиндр» Гибкое колесо типа «шляпа»

Особенности конструкции

Устройство волнового редуктора зависит от сферы его применения. Основная цель, для которой используется этот механизм – преобразование входного вращательного движения двигателей в:

По своей конструкции они схожи с планетарными механизмами так как имеется несколько зон соприкосновения с гибким колесом. Обеспечивает одновременное соприкосновение кулачок. Он имеет несколько выступов, которые образуют волны при вращении. При этом нагрузка распределена по всем зацепляемым зубьям равномерно. При производстве волновых редукторов количество зубьев на колесах варьируется в пределах от 100 до 600.

Место, где вершина волны деформируемого элемента соприкасаются с другой шестерней, называется зоной зацепления.

По количеству таких зон редуктор с гибким элементом может быть:

Большее количество волн встречается крайне редко.

Основные отличия волнового редуктора

  • Большое передаточное число для одноступенчатого редуктора: до 320:1 в серийно выпускаемых изделиях
  • Большое количество зубьев, которые находятся в одновременном зацеплении
  • Высокая точность
  • Большой момент нагрузки в расчёте на единицу объёма или на единицу массы
  • Отсутствие маленьких передаточных чисел (менее 30:1)
  • Простая конструкция
  • Высокая надёжность
  • Простая передача вращения в другую среду
  • Полый вал
  • Жёсткость на скручивание ограничена
  • Короткая осевая длина

Лебедка с волновым редуктором

Волновые редукторы могут быть двух типов – зубчатые и червячные. Применение лебедки в данном устройстве нашло себя лишь при использовании редуктора червячного типа. Также в волновых редукторах червячного типа с использованием лебедки существует два способа расположения червяка. Нижняя установка, когда он находится под червячным колесом, а также верхняя, когда червяк располагается над этим же колесом.

Кроме того, привод с лебедкой может использоваться для установки на космическом корабле. Привод с лебедкой для космического корабля представляет собой двухступенчатый волновой редуктор. Предназначение этого устройства на таких кораблях – это передача вращения в полностью герметичное пространство. Так как редуктор является двухступенчатым, то первая ступень – планетарная, а вторая – волновая передача. Также стоит отметить, что есть возможность сделать устройство самотормозящим. Для этого необходимо заменить планетарную передачу в редукторе на червячную.

Практические преимущества волновых редукторов

Отличительные особенности волновых редукторов выступают как преимущества в ряде отраслей, получивших в настоящее время большое развитие. В качестве примера можно назвать робототехнику (классические промышленные роботы, коллаборативные роботы, а также человекоподобные роботы) и медицинская техника (хирургические роботы, медицинские сканирующие установки и экзоскелеты). Короткая длина вдоль оси, возможность получить большой крутящий момент в компактных размерах, а также полый вал позволяют обеспечить компактные размеры всех звеньев робота, а высокая точность редукторов позволяет достичь хорошей точности всего робота.

В других отраслях, где готовые изделия должны работать в условиях агрессивных сред (например, вакуум, радиоактивное излучение, особо высокие или особо низкие температуры также часто применяются волновые редукторы. Здесь востребован высокий удельный момент, позволяющий обеспечить компактность конструкции, возможность просто передавать вращение в агрессивную среду без дополнительных уплотнений и хорошие показатели надёжности, обусловленные простой конструкцией.

Волновые передачи

Появление и дальнейший процесс развития волновой передачи был осуществлен в далеком 1959 году. Изобретателем, а также человеком, который запатентовал эту технологию, стал американский инженер Массер.

Волновой редуктор состоит из нескольких основных элементов:

Среди преимуществ, которые можно выделить у этого способа передачи движения, – меньшая масса и размеры устройства, более высокая точность с кинематической точки зрения, а также меньший мертвый ход. Если есть необходимость, то использовать такой тип передачи движения можно и в герметичном пространстве, не используя при этом уплотняющие сальники. Данный показатель наиболее важен для такой техники, как авиационная, космическая, подводная. Кроме того, волновой редуктор применяется и в некоторых машинах, использующихся в отрасли химической промышленности.

Читайте также:
Автомат ввода резерва своими руками

Форум клана ЧПУшников

Меню навигации

  • Форум
  • Наш фирменный клуб. “Форум А”
  • “Мы в “Одноклассниках””
  • “Мы в ВКонтакте”
  • “3d Сканирование”
  • Написать нам
  • Участники
  • Правила
  • Регистрация
  • Войти

Пользовательские ссылки

Информация о пользователе

Волновой редуктор

Сообщений 1 страница 21 из 21

Поделиться105-05-2016 23:22:08

  • Автор: JIEXA
  • Местный
  • Откуда: Калининград
  • Зарегистрирован : 01-06-2012
  • Приглашений: 0
  • Сообщений: 186
  • Уважение: [+67/-4]
  • Позитив: [+151/-8]
  • Пол: Мужской
  • Возраст: 48 [1973-06-17]
  • Провел на форуме:
    11 дней 16 часов
  • Последний визит:
    24-12-2020 21:11:44

Никто не пытался сделать самостоятельно сей девайс? В принципе ничего сложного.
Ссылка
Ссылка
Мои изыскания на эту тему, но что-то не сходиться.

Отредактировано JIEXA (05-05-2016 23:37:34)

Поделиться206-05-2016 10:27:58

  • Автор: megagad
  • Местный
  • Зарегистрирован : 11-10-2014
  • Приглашений: 0
  • Сообщений: 180
  • Уважение: [+23/-1]
  • Позитив: [+9/-5]
  • Провел на форуме:
    2 дня 18 часов
  • Последний визит:
    04-08-2017 06:32:17

“Гипоциклоида” никоим боком к “волновым” редукторам не относится. Для изготовления гипоциклоиды много навыков не надо – нужен точный станок и много-много смазки
И да – а что за формат файла?

Поделиться306-05-2016 11:38:48

  • Автор: Flint2015
  • Гуру
  • Зарегистрирован : 30-12-2014
  • Приглашений: 1
  • Сообщений: 1410
  • Уважение: [+271/-1]
  • Позитив: [+32/-6]
  • Провел на форуме:
    29 дней 2 часа
  • Последний визит:
    14-09-2021 11:17:13

“Гипоциклоида” никоим боком к “волновым” редукторам не относится

Всё, что показано на видео и есть, разновидности волновых редукторов. То что вы называете гипоциклоида, вы же обратили внимание на каком языке это написано., название не меняет смысла волнового принципа работы.

Никто не пытался сделать самостоятельно сей девайс? В принципе ничего сложного.

Вроде бы ничего сложного, но есть большое НО, 1 как минимум 2 хороших станка (токарный и вертикальнофрезерный) 2 подбор материала (металла) и 3 минимальные инженерные навыки, для расчёта зубьев и размера экцентрика.

Отредактировано Flint2015 (06-05-2016 11:39:11)

Поделиться406-05-2016 12:33:12

  • Автор: megagad
  • Местный
  • Зарегистрирован : 11-10-2014
  • Приглашений: 0
  • Сообщений: 180
  • Уважение: [+23/-1]
  • Позитив: [+9/-5]
  • Провел на форуме:
    2 дня 18 часов
  • Последний визит:
    04-08-2017 06:32:17

название не меняет смысла волнового принципа работы.

Ок. Покажите на схеме “генератор волны”

вы же обратили внимание на каком языке это написано., название не меняет смысла волнового принципа работы.

Зачем мне читать название, когда я смотрю видео? на видео – обычный гипоцклоидный редуктор. К волновым редукторам данное поделие не имеет отношения ВООБЩЕ! Оно ближе к “планетарным” редукторам с высоким коэффициентом редукции.

Поделиться506-05-2016 16:21:29

  • Автор: JIEXA
  • Местный
  • Откуда: Калининград
  • Зарегистрирован : 01-06-2012
  • Приглашений: 0
  • Сообщений: 186
  • Уважение: [+67/-4]
  • Позитив: [+151/-8]
  • Пол: Мужской
  • Возраст: 48 [1973-06-17]
  • Провел на форуме:
    11 дней 16 часов
  • Последний визит:
    24-12-2020 21:11:44

Ок. Покажите на схеме “генератор волны”

Эксцентрик разве не является генератором волны?

“Гипоциклоида” никоим боком к “волновым” редукторам не относится. Для изготовления гипоциклоиды много навыков не надо – нужен точный станок и много-много смазки
И да – а что за формат файла?

Отредактировано JIEXA (06-05-2016 16:27:07)

Поделиться606-05-2016 17:34:02

  • Автор: Flint2015
  • Гуру
  • Зарегистрирован : 30-12-2014
  • Приглашений: 1
  • Сообщений: 1410
  • Уважение: [+271/-1]
  • Позитив: [+32/-6]
  • Провел на форуме:
    29 дней 2 часа
  • Последний визит:
    14-09-2021 11:17:13

Зачем мне читать название, когда я смотрю видео? на видео – обычный гипоцклоидный редуктор. К волновым редукторам данное поделие не имеет отношения ВООБЩЕ! Оно ближе к “планетарным” редукторам с высоким коэффициентом редукции.


На данном видео одна из разновидностей волнового редуктора, как вы выразились ( Оно ближе к “планетарным” ) этому редуктору там до Пекина ногами ракообразных.
Внимательно изучите принцип работы волнового редуктора, в этой конструкции первичный вал имеет эксцентрик, движение передаётся элементу типа “зубчатое колесо” в этой конструкции нету промежуточных роликов либо шариков, и вот эти колёса волновыми движениями смещаются по выступам внешней обоймы, совершая круговое движение вторичного вала с огромной редукцией.
Для нормальной наглядности посмотрите вот такой научно-популярный фильм.


Ну судя по вашим словам вы будете утверждать что , вот это планетарный редуктор, раз стоят шестерни?

В планетарном редукторе обязательно в конструкции присутствуют САТЕЛЛИТНЫЕ ШЕСТЕРНИ, сборка из сателлитов и внешней обоймы с внутренним зубом, составляют одну ступень редуктора, есть двух, трёх четырёх ступенчатые, но основным элементом в них являются САТЕЛЛИТЫ.

Отредактировано Flint2015 (06-05-2016 18:01:39)

Поделиться706-05-2016 20:51:02

  • Автор: megagad
  • Местный
  • Зарегистрирован : 11-10-2014
  • Приглашений: 0
  • Сообщений: 180
  • Уважение: [+23/-1]
  • Позитив: [+9/-5]
  • Провел на форуме:
    2 дня 18 часов
  • Последний визит:
    04-08-2017 06:32:17

Эксцентрик разве не является генератором волны?

И в чём он её возбуждает?

На данном видео одна из разновидностей волнового редуктора,

Вы по буржуйски понимаете? там чётко русски по английски говорят – ГИПОЦИКЛОИДНЫЙ! Не “Волновой”(Wave)!
Говоря проще:
https://en.wikipedia.org/wiki/Harmonic_drive и https://en.wikipedia.org/wiki/Cycloidal_drive – разные типы редукторов.
НО, если не понимаете буржуйского – изучайте на родном: https://ru.wikipedia.org/wiki/Волновая_передача и https://ru.wikipedia.org/wiki/Циклоидальная_передача
Принципы работы:
Волновой:

Состоит из жесткого неподвижного элемента — зубчатого колеса с внутренними зубьями, неподвижного относительно корпуса передачи; гибкого элемента — тонкостенного упругого зубчатого колеса с наружными зубьями, соединенного с выходным валом; генератора волн — кулачка, эксцентрика или другого механизма, растягивающего гибкий элемент до образования в двух (или более) точках пар зацепления с неподвижным элементом. Число зубьев гибкого колеса несколько меньше числа зубьев неподвижного элемента. Число волн деформации равно числу выступов на генераторе. В вершинах волн зубья гибкого колеса полностью входят в зацепление с зубьями жёсткого, а во впадинах волн — полностью выходят из зацепления. Линейная скорость волн деформации соответствует скорости вершин выступов на генераторе, то есть в гибком элементе существуют бегущие волны с известной линейной скоростью. Разница чисел зубьев жёсткого и гибкого колёс обычно равна (реже кратна) числу волн деформации.

Входной (ведущий) вал прикреплён эксцентрично к шарикоподшипнику, принуждая циклоидальную пластину вращаться по окружности. Циклоидальная пластина независимо вращается вокруг подшипника. Её вращение происходит за счёт того, что впадины по периметру пластины входят в зацепление с неподвижными выступами («зубьями») на внешнем кольце. Направление вращения выходного (ведомого) вала противоположно направлению вращения входного (ведущего) вала. Движение деталей в циклоидальной передаче подобно движению, имеющему место в планетарной передаче.

И да – возьмите справочник по механике и почитайте про волновые и циклоидальные передачи.
Насчёт видео(второго и третьего) – не один десяток лет “инжинеры” от природы пытаются скрестить волновой и циклоидальный редуктор(дома на коленке сделать тонкий зубчатый венец проблематично) – результат вы можете наблюдать в том видео, что вы приводите как аргумент тоджественности волнового и циклоидалного редуктора. Проблема как всегда в том, что дальше “компьютерных моделей” такие агрегаты редко уходят – всё тормозится на этапе изготовления(а иногда и поиска подходящего материала). И да – у СИМАКО не волновой, а циклоидальный редуктор Причём с одним огромным недостатком – проскальзывание “тел качения” относительно центрального волнового редуктора Собственно по этой причине дальше “бумажки” и “мультика” дело у них не пошло. Точнее – что-то вроде продают, но что “под крышечкой” не показывают

Читайте также:
Бензиновая виброплита своими руками

Волновые безлюфтовые редукторы Nidec Shimpo серии WPU

Волновые передачи

Появление и дальнейший процесс развития волновой передачи был осуществлен в далеком 1959 году. Изобретателем, а также человеком, который запатентовал эту технологию, стал американский инженер Массер.

Волновой редуктор состоит из нескольких основных элементов:

  • Неподвижное колесо, имеющее внутренние зубья.
  • Вращающееся колесо, имеющее наружные зубья.
  • Водило.

Среди преимуществ, которые можно выделить у этого способа передачи движения, — меньшая масса и размеры устройства, более высокая точность с кинематической точки зрения, а также меньший мертвый ход. Если есть необходимость, то использовать такой тип передачи движения можно и в герметичном пространстве, не используя при этом уплотняющие сальники. Данный показатель наиболее важен для такой техники, как авиационная, космическая, подводная. Кроме того, волновой редуктор применяется и в некоторых машинах, использующихся в отрасли химической промышленности.



Основные серии установочных комплектов

В каталоге Harmonic Drive в настоящее время представлено шесть серий редукторов в исполнении установочный комплект. Все эти серии отличаются по параметрам и в частности по производительности. Можно выделить группу серий с базовой производительностью: HFUC-2A, HFUS-2A и CPL-2A. Серия HFUC представлена в самом широком диапазоне габаритов (типоразмеров): от 8 до 100, в части прочих параметров она занимает среднее положение. Гибкое кольцо выполнено в классической форме «кастрюля». Серия HFUS имеет несколько иную конструкцию: гибкое кольцо выполнено в форме «шляпа», что даёт больше пространства внутри редуктора. С другой стороны, по этой причине наружный диаметр и масса редукторов HFUS-2A несколько увеличились по сравнению с аналогичными редукторами HFUC-2A. Серия установочных комплектов CPL-2A была разработана для применения в авиационных и космических системах, где требуется минимальные размеры и масса. При разработке была проведена оптимизация конструкции, благодаря чему масса и длина редуктора были уменьшены, и при этом удалось сохранить на прежнем уровне номинальный момент.

Ещё одна группа серий характеризуется увеличенной производительностью: номинальный момент у них выше, чем у серий с базовой производительностью. К таким сериям относятся CSG-2A и CobaltLine-2A. Обе серии кроме увеличенного номинального момента (примерно на 30%) имеют также значительно (на 40%) увеличенный срок службы по сравнению с сериями базовой производительности. По остальным параметрам и по конструкции эти две серии одинаковы, различие состоит в месте производства: CSG-2A на заводе в Японии, CobaltLine-2A — на заводе в Германии.


Рис. 6 CobaltLine Double

Кроме двух перечисленных выше, есть ещё одна группа редукторов, отличающихся пониженной производительностью для тех же типоразмеров. В настоящее время к этой группе относится только одна серия: CSD-2A. Эта серия имеет пониженную массу (на 40% по сравнению с HFUC) и значительно сниженную осевую длину (на 50%). Легко видеть, что по длине эта серия даже более компактна, чем CPL-2A (у последней длина короче, чем у HFUC, всего на 10%), однако за это приходится расплачиваться более низкой производительностью.

Поскольку установочные комплекты содержат в себе необходимый минимум компонентов с тем, чтобы все остальные детали добавлялись при интеграции редуктора в конструкцию конечного изделия, то полый вал как элемент конструкции также отсутствует. Он может быть установлен непосредственно в конечном изделии, если это необходимо. Кроме того, необходимо отметить что установочные комплекты поставляются.

Принцип работы редуктора

С кинематической точки зрения, волновые передачи — это разновидность планетарных передач, которая имеет одно гибкое и зубачатое колесо.

Принцип работы волнового редуктора заключается в следующем. Неподвижное колесо устройства крепится в нужном корпусе, а выполняется оно в виде простого зубчатого колеса, имеющего внутреннее зацепление. Гибкое же зубчатое колесо выполняется в форме стакана, обладающего тонкой стенкой, легко поддающейся деформации. В более толстой части этого же колеса, то есть левой, нарезают зубья, в то время как правая часть выполняется в форме вала. Самый простой элемент — это водило, которое состоит из овального кулачка и подшипника.

Само же движение осуществляется за счет того, что происходит деформация зубчатого венца гибкого колеса.

Принцип работы

Волновые редукторы имеют следующий принцип работы:

  1. Недеформируемое колесо с внутренними зубьями крепится в корпусе.
  2. Гибкое зубчатое колесо с тонкими стенками устанавливается на генератор волн.
  3. При вращении генератор волн деформирует гибкое колесо, тем самым перемещает точки соприкосновения наружной и внутренней шестерней.

Плавность хода обеспечивается тем, что на гибком колесе меньшее количество зубьев.

Конструкции редукторов

В настоящее время науке известно множество разнообразных конструкций для волнового редуктора. Чаще всего предназначение всех этих устройств — это преобразование входного вращательного движения в выходное вращательное или же выходное поступательное. Также стоит отметить, что волновую передачу можно рассматривать, как разновидность многопоточного планетарного механизма. Это вполне возможно, так как эти механизмы обладают многозонным, а если брать в расчет зубчатый механизм, то еще и многопарным контактом между выходным звеном и гибким колесом механизма. Можно отметить, что при номинальной нагрузке на волновой редуктор лишь от 15 до 20% всех зубьев устройства находится в зацеплении. Именно по этой причине во всех волновых передачах используют мелкомодульные механизмы, число зубьев на которых находится в переделах от 100 до 600. Также можно добавить, что в зависимости от числа зон или же волн в устройстве они подразделяются на одноволновые, двухволновые и т.д.

Особенности конструкции

Устройство волнового редуктора зависит от сферы его применения. Основная цель, для которой используется этот механизм – преобразование входного вращательного движения двигателей в:

  • выходное поступательное;
  • выходное вращательное.

По своей конструкции они схожи с планетарными механизмами так как имеется несколько зон соприкосновения с гибким колесом. Обеспечивает одновременное соприкосновение кулачок. Он имеет несколько выступов, которые образуют волны при вращении. При этом нагрузка распределена по всем зацепляемым зубьям равномерно. При производстве волновых редукторов количество зубьев на колесах варьируется в пределах от 100 до 600.

Читайте также:
Гибка листового алюминия

Место, где вершина волны деформируемого элемента соприкасаются с другой шестерней, называется зоной зацепления.

По количеству таких зон редуктор с гибким элементом может быть:

Большее количество волн встречается крайне редко.

Волновой мотор-редуктор

Описание данного типа волновой передачи можно сделать на основе мотора редуктора модели МВз2-160-5,5. Данная модель обладает сдвоенной волновой зубчатой передачей. Конструкция данного редуктора состоит из гибкого колеса, которое выполнено в виде кольца с тонкими стенками и двумя зубчатыми венцами. Кроме того, в конструкции имеется и общий для этих деталей кулачковый генератор волн, обладающий гибким подшипником.

Также у этой модели есть несколько особенностей, касающихся конструкции редуктора:

  1. Размер вдоль оси вала невелик.
  2. Генератор волн плавающего типа, а соединение с валом электродвигателя шарнирное.
  3. На конце выходного вала этого устройства располагаются прямобочные шлицы.

Этот тип мотора-редуктора может использоваться, как индивидуальный приводной модуль.

Редуктор волновой с эвольвентным профилем зубьев.

Описание конструкции волнового редуктора.

Редуктор волновой с эвольвентным профилем зубьев — это одноступенчатый редуктор с двумя зубчатыми колесами: одно — жесткое с внутренними зубьями, второе — гибкое — в виде цилиндра с зубчатым венцом. Гибкий зубчатый венец деформируется генератором волн. Генератор состоит из кулачка, насаженного на быстроходный вал, и шарикоподшипника с тонкими кольцами. Недеформируемый конец гибкого цилиндра шлицевый. Шлицы нарезаны обычным зуборезным инструментом. От осевого смещения цилиндр удерживается проволочным кольцом, расположенным на шлицах.

Тихоходный вал вращается в противоположном направлении относительно быстроходного вала.

Сборка жесткого колеса с гибким осуществляется после деформации гибкого зубчатого венца генератором. Зацепление и подшипники смазываются маслом, разбрызгиваемым генератором. Охлаждается редуктор вентилятором, установленным на быстроходном валу.

Редуктор предназначен для непрерывной длительной работы. КПД редуктора 0,85…0,9. Возможна передача вращения от тихоходного вала к быстроходному, КПД мультипликатора на 15…30% ниже КПД редуктора.

Схема взаимодействия звеньев.

Технические характеристики волнового редуктора.

  1. Крутящий момент на тихоходном валу: 1000 Н⋅м;
  2. Частота вращения тихоходного вала: 14,2 мин -1 ;
  3. Мощность на тихоходном валу: 1,5 кВт;
  4. Передаточное число: 100;
  5. КПД редуктора: 0,85…0,9;
  6. Материал зубчатых колес: сталь 30ХГС, твердость: 30…35HRCэ.

Технические параметры мотора-редуктора

Технические параметры для волнового мотора-редуктора — это несколько основных критериев:

  • Первый параметр, которому должен соответствовать редуктор — это крутящийся момент на выходном валу. Он должен составлять — 250 Н⋅м.
  • Второй параметр — это частота вращения вала редуктора. Показатель этого параметра должен быть — 5,5 мин-1.
  • Третий параметр для этого устройства — передаточное отношение. Показатель данного параметра — 264.
  • Коэффициент полезного действия волнового мотора-редуктора должен быть 0,7.
  • Параметры электродвигателя для этой модели следующие: 0,31 кВт мощности, Частота вращения 1450 мин-1, рабочее напряжение для этого механизма 220 В или 380 В.
  • Полный вес устройства составляет 20 кг.

Это основные параметры, которые предъявляются к волновому мотору-редуктору.

Зубчатая передача

Не так давно инженерами был создан новый вид зубчатой передачи, которая по своим параметрам, а также конструкции схожа с планетарной передачей, однако при этом обладает принципиально новой передачей вращения. Эти новые изобретения — волновые зубчатые редукторы. Для того чтобы передавать вращательное движение в этих устройствах, была достигнута волновая бегущая деформация, которой поддается одно из зубчатых колес редуктора. Данное изобретение отлично зарекомендовало себя в некоторого вида следящих системах, а также в системах автоматического управления с высоким требованием к точности. Такое специфическое предназначение эти редукторы получили из-за своих характеристик: небольшой физический вес, а также малые размеры всего устройства в целом, которое при этом обладает большим показателем передаточного отношения, характеризуется более высоким коэффициентом полезного действия, то есть КПД, небольшими люфтами, а также малым износом деталей редуктора. Именно эти параметры и стали решающими в определении цели работы для волновых зубчатых редукторов.

Лебедка с волновым редуктором

Волновые редукторы могут быть двух типов — зубчатые и червячные. Применение лебедки в данном устройстве нашло себя лишь при использовании редуктора червячного типа. Также в волновых редукторах червячного типа с использованием лебедки существует два способа расположения червяка. Нижняя установка, когда он находится под червячным колесом, а также верхняя, когда червяк располагается над этим же колесом.

Кроме того, привод с лебедкой может использоваться для установки на космическом корабле. Привод с лебедкой для космического корабля представляет собой двухступенчатый волновой редуктор. Предназначение этого устройства на таких кораблях — это передача вращения в полностью герметичное пространство. Так как редуктор является двухступенчатым, то первая ступень — планетарная, а вторая — волновая передача. Также стоит отметить, что есть возможность сделать устройство самотормозящим. Для этого необходимо заменить планетарную передачу в редукторе на червячную.

Применение редукторов волнового типа

Волновой редуктор РВП 240-21 используется в качестве привода для шнекового конвейера КШ25/12,5. Механизм изготовлен с применением самых передовых конструкторских решений отечественных и мировых инженеров. Он обладает высоким запасом прочности и рассчитан на длительный период эксплуатации. Все электронное оборудование изготовлено в полностью взрывобезопасном варианте, так что механизм может быть использован и на опасных производствах.

Конвейеры были разработаны отечественным «Опытно-механическим заводом» и введены в эксплуатацию на некоторых предприятиях лишь в 2014 году. Их использование позволило повысить безопасность производства. Волновые редукторы для ЧПУ пользуются достаточно высоким спросом. Причем многие заводы предлагают изготовление механизмов по индивидуальным запросам клиента. Для станков с числовым управлением очень важна точность и плавность движений, которую могут обеспечить волновые передачи. Подобные элементы используются в медицине, ювелирном деле, точном машиностроении и робототехнике.

Стоимость индивидуально изготовленного прибора будет не маленькой, зато он идеально подойдет для выполнения отведенных функций. Кроме того изготовитель выедет на место и поможет осуществить правильную настройку механизма по желанию клиента. Также заказчик может рассчитывать и на гарантийное обслуживание в случае возникновения каких-либо проблем.

Расчеты редуктора

Как и для любой другой детали, для создания редуктора необходимо проводить определенные расчеты, которые будут показывать, способно ли устройство выполнять свои функции, а также из какого материала должно выполняться устройство и т.д. Основным критерием для расчета волнового редуктора, его работоспособности, является прочность гибкого колеса. Оценить данный параметр можно при помощи сопротивления усталости зубчатого венца. Основной габаритный размер передачи — это внутренний диаметр гибкого колеса. Определяется он по приближенной зависимости сопротивления усталости с учетом нормальных напряжений.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
gmnu-nazarovo.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: