Вольфрам металл или неметалл

ВОЛЬФРАМ — самый тугоплавкий металл

Металл получил название от минерала вольфрамита («Wolf Rahm» с немецкого). Минерал весил немало, и в Швеции горняки назвали его «тунг стен» — тяжелый камень.

Во Франции, США и Великобритании для вольфрама используют название «tungsten».

Как его нашли

История открытия связана со шведским химиком К.В. Шееле. Из неизученного минерала он выделил неизвестную «тунгстеновую» кислоту (WO3·H2O). Братья Элюар выделили из её солей новый элемент. Поскольку работали они с вольфрамитом, то назван был элемент вольфрамом.

Свойства

Вольфрам относится к переходным металлам. Имеет серебристо-серый цвет. В периодической таблице Менделеева расположен в VI группе и носит атомный № 74.

Физические свойства металла:

  • плотность 19,25 г/см3;
  • кристаллическая структура объемноцентрированная, кубическая;
  • парамагнитен;
  • температура плавления 3422 °C;
  • цвет искры — желтый, дает пучок коротких прерывистых искр;
  • число стабильных изотопов 4.

Некоторые свойства вольфрама уникальны. Тугоплавкость — визитная карточка вольфрама, ею он отличается от других металлов.

Свойства атома
Название, символ, номер Вольфра́м / Wolframium (W), 74
Атомная масса
(молярная масса)
183,84(1)[1] а. е. м. (г/моль)
Электронная конфигурация [Xe] 4f14 5d4 6s2
Радиус атома 141 пм
Химические свойства
Ковалентный радиус 170 пм
Радиус иона (+6e) 62 (+4e) 70 пм
Электроотрицательность 2,3 (шкала Полинга)
Электродный потенциал W ← W3+ 0,11 В
W ← W6+ 0,68 В
Степени окисления 6, 5, 4, 3, 2, 0
Энергия ионизации
(первый электрон)
769,7 (7,98) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 19,25[2] г/см³
Температура плавления 3695 K (3422 °C, 6192 °F)[2]
Температура кипения 5828 K (5555 °C, 10031 °F)[2]
Уд. теплота плавления 285,3 кДж/кг
52,31[3][4] кДж/моль
Уд. теплота испарения 4482 кДж/кг 824 кДж/моль
Молярная теплоёмкость 24,27[5] Дж/(K·моль)
Молярный объём 9,53 см³/моль
Кристаллическая решётка простого вещества
Структура решётки кубическая
объёмноцентрированная
Параметры решётки 3,160 Å
Температура Дебая 310 K
Прочие характеристики
Теплопроводность (300 K) 162,8[6] Вт/(м·К)
Номер CAS 7440-33-7

Месторождения и добыча

Для промышленной добычи пригодны вольфрамиты (гюбнерит, ферберит) и шеелит.

  • штокверковый вольфрамитовый;
  • штокверковый шеелитовый;
  • жильный вольфрамитовый;
  • скарново-шеелитовый.

Крупнейшими запасами вольфрамовых руд обладают:

  • Китай;
  • Канада;
  • Россия;
  • Австралия;
  • США.

Российские запасы вольфрамовых руд происхождением из коренных месторождений.

Получение

Промышленное получение металла из руды предваряется обогащением. Это дробление, шлифовка, флотация. Затем из концентрата выделяют WO3, который затем восстанавливают до металла водородом при температуре около 700°С.

Компактный вольфрам получают:

  1. Методом порошковой металлургии. Достоинство метода — возможность равномерного введения присадок.
  2. Электронно-лучевая плавка, или плавка в электро-дуговых печах. Достоинство метода — возможность получать крупные (до 3 тонн) заготовки металла.

Сплавы

Присадки меняют характеристики полученных сплавов.

Марка российского сплава Присадки
ВД-20 80% вольфрама, 20% меди
ВНЖ-95 3% никеля, 2% железа
ВНМ 2-1 2% никеля, 1% меди
ВНЖ 7-3 7% никеля, 3% железа
ВД-30 70% вольфрама, 30% меди
ВНЖ-97.5 1.5% никеля, 1% железа

Плюсы и минусы металла

Преимущества Недостатки
Электрическое сопротивление Высокая плотность
Температура плавления Слабая сопротивляемость окислению
Коэффициент линейного расширения Ломкость при низких температурах

Применение

В применении тугоплавкого металла соперничают металлообрабатывающая, нефтехимическая, мебельная промышленности.

Вольфрам используют в производства электродов для аргонно-дуговой сварки.

Качественная быстрорежущая сталь почти всегда имеет в составе вольфрам.

Светящаяся нить накаливания в осветительных лампах, аноды и катоды в электронных приборах — это чистый вольфрам.

Победит, известный советский сплав, на 90% состоит из карбида вольфрама (WC). Победитовые сверла известны многим «рукодельным» мужчинам.

Металл входит в состав тяжелых сплавов, которые применяют в производстве бронебойных снарядов, гироскопов для баллистических ракет.

Начали осваивать и ювелиры тяжелый металл — он гипоаллергенный, тяжелый и прочный.

Наночастицы WO3 нашли применение в медицине. Их антимикробные свойства используют для очистки сточных вод. В компьютерной томографии наночастицы WO3 применяют, как контрастный агент.

Цена вопроса

Средняя цена тонны W на конец июня 2020 года составила 24120-24600 долларов США.

Мне 42 года и я специалист в области минералогии. Здесь на сайте я делюсь информацией про камни и их свойства — задавайте вопросы и пишите комментарии!

Вольфрам

Вольфрам — самый тугоплавкий из металлов. Более высокую температуру плавления имеет только неметаллический элемент — углерод. При стандартных условиях химически стоек. Название Wolframium перешло на элемент с минерала вольфрамит, известного ещё в XVI в. под названием лат. Spuma lupi («волчья пена») или нем. Wolf Rahm («волчьи сливки», «волчий крем»). Название было связано с тем, что вольфрам, сопровождая оловянные руды, мешал выплавке олова, переводя его в пену шлаков («пожирает олово как волк овцу»).

  1. Структура
  2. Свойства
  3. Запасы и добыча
  4. Происхождение
  5. Применение
  6. Классификация
  7. Физические свойства
  8. Оптические свойства
  9. Кристаллографические свойства

СТРУКТУРА

Кристалл вольфрама имеет объемноцентрированную кубическую решетку. Кристаллы вольфрама на холоду отличаются малой пластичностью, поэтому в процессе прессования порошка они практически почти не изменяют своей основной формы и размеров и уплотнение порошка происходит главным образом путем относительного перемещения частиц.

В объемно-центрированной кубической ячейке вольфрама атомы располагаются по вершинам и в центре ячейки, т.е. на одну ячейку приходится два атома. ОЦК-структура не является плотнейшей упаковкой атомов. Коэффициент компактности равен 0,68. Пространственная группа вольфрама Im3m.

СВОЙСТВА

Вольфрам — блестящий светло-серый металл, имеющий самые высокие доказанные температуры плавления и кипения (предполагается, что сиборгий ещё более тугоплавок, но пока что об этом твёрдо утверждать нельзя — время существования сиборгия очень мало). Температура плавления — 3695 K (3422 °C), кипит при 5828 K (5555 °C). Плотность чистого вольфрама составляет 19,25 г/см³. Обладает парамагнитными свойствами (магнитная восприимчивость 0,32·10−9). Твердость по Бринеллю 488 кг/мм², удельное электрическое сопротивление при 20 °C — 55·10−9 Ом·м, при 2700 °C — 904·10−9 Ом·м. Скорость звука в отожжённом вольфраме 4290 м/с. Является парамагнетиком.

Читайте также:
Бронирование двери своими руками

Вольфрам является одним из наиболее тяжелых, твердых и самых тугоплавких металлов. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 °C хорошо поддается ковке и может быть вытянут в тонкую нить.

ЗАПАСЫ И ДОБЫЧА

Кларк вольфрама земной коры составляет (по Виноградову) 1,3 г/т (0,00013 % по содержанию в земной коре). Его среднее содержание в горных породах, г/т: ультраосновных — 0,1, основных — 0,7, средних — 1,2, кислых — 1,9.

Процесс получения вольфрама проходит через подстадию выделения триоксида WO3 из рудных концентратов и последующем восстановлении до металлического порошка водородом при температуре около 700 °C. Из-за высокой температуры плавления вольфрама для получения компактной формы используются методы порошковой металлургии: полученный порошок прессуют, спекают в атмосфере водорода при температуре 1200—1300 °C, затем пропускают через него электрический ток. Металл нагревается до 3000 °C, при этом происходит спекание в монолитный материал. Для последующей очистки и получения монокристаллической формы используется зонная плавка.

ПРОИСХОЖДЕНИЕ

Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисью вольфрама WO3 с оксидами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Промышленное значение имеют вольфрамит (вольфрамат железа и марганца nFeWO4 * mMnWO4 — соответственно, ферберит и гюбнерит) и шеелит (вольфрамат кальция CaWO4). Вольфрамовые минералы обычно вкраплены в гранитные породы, так что средняя концентрация вольфрама составляет 1—2 %.

Наиболее крупными запасами обладают Казахстан, Китай, Канада и США; известны также месторождения в Боливии, Португалии, России, Узбекистане и Южной Корее. Мировое производство вольфрама составляет 49—50 тысяч тонн в год, в том числе в Китае 41, России 3,5; Казахстане 0,7, Австрии 0,5. Основные экспортёры вольфрама: Китай, Южная Корея, Австрия. Главные импортёры: США, Япония, Германия, Великобритания.
Также есть месторождения вольфрама в Армении и других странах.

ПРИМЕНЕНИЕ

Тугоплавкость и пластичность вольфрама делают его незаменимым для нитей накаливания в осветительных приборах, а также в кинескопах и других вакуумных трубках.
Благодаря высокой плотности вольфрам является основой тяжёлых сплавов, которые используются для противовесов, бронебойных сердечников подкалиберных и стреловидных оперенных снарядов артиллерийских орудий, сердечников бронебойных пуль и сверхскоростных роторов гироскопов для стабилизации полёта баллистических ракет (до 180 тыс. об/мин).

Вольфрам используют в качестве электродов для аргоно-дуговой сварки. Сплавы, содержащие вольфрам, отличаются жаропрочностью, кислотостойкостью, твердостью и устойчивостью к истиранию. Из них изготовляют хирургические инструменты (сплав «амалой»), танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей, контейнеры для хранения радиоактивных веществ. Вольфрам — важный компонент лучших марок инструментальных сталей. Вольфрам применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов. Сплав вольфрама и рения применяется в таких печах в качестве термопары.

Для механической обработки металлов и неметаллических конструкционных материалов в машиностроении (точение, фрезерование, строгание, долбление), бурения скважин, в горнодобывающей промышленности широко используются твёрдые сплавы и композитные материалы на основе карбида вольфрама (например, победит, состоящий из кристаллов WC в кобальтовой матрице; широко применяемые в России марки — ВК2, ВК4, ВК6, ВК8, ВК15, ВК25, Т5К10, Т15К6, Т30К4), а также смесей карбида вольфрама, карбида титана, карбида тантала (марки ТТ для особо тяжёлых условий обработки, например, долбление и строгание поковок из жаропрочных сталей и перфораторное ударно-поворотное бурение крепкого материала). Широко используется в качестве легирующего элемента (часто совместно с молибденом) в сталях и сплавах на основе железа. Высоколегированная сталь, относящаяся к классу «быстрорежущая», с маркировкой, начинающейся на букву Р, практически всегда содержит вольфрам. ( Р18, Р6М5. от rapid — быстрый, скорость).

Сульфид вольфрама WS2 применяется как высокотемпературная (до 500 °C) смазка. Некоторые соединения вольфрама применяются как катализаторы и пигменты. Монокристаллы вольфраматов (вольфраматы свинца, кадмия, кальция) используются как сцинтилляционные детекторы рентгеновского излучения и других ионизирующих излучений в ядерной физике и ядерной медицине.

Дителлурид вольфрама WTe2 применяется для преобразования тепловой энергии в электрическую (термо-ЭДС около 57 мкВ/К). Искусственный радионуклид 185 W используется в качестве радиоактивной метки при исследованиях вещества. Стабильный 184 W используется как компонент сплавов с ураном-235, применяемых в твердофазных ядерных ракетных двигателях, поскольку это единственный из распространённых изотопов вольфрама, имеющий низкое сечение захвата тепловых нейтронов (около 2 барн).

Вольфрам – полезные свойства и особенности металла

Название этого элемента сразу вызывает ассоциации с электрической лампочкой. Нить накаливания, которая светится внутри стеклянной колбы, сделана из этого материала. Это вольфрам.

  1. Что представляет собой
  2. Как был открыт
  3. Старатели
  4. Наука
  5. Как представлен в природе
  6. Физико-химические характеристики
  7. Месторождения, добыча
  8. Технология получения
  9. Номенклатура марок металла
  10. Как используется
  11. Металл, сплавы
  12. Соединения
  13. Другие формы
  14. Значение для человека
  15. Цены

Что представляет собой

Вольфрам – это металл, химический элемент, занимающий ячейку периодической системы Менделеева № 74.

По блеску и сероватому цвету схож с платиной.

Относится к металлам «туговскипающей» и «тугоплавкой» групп. По тугоплавкости уступает только жидкому углероду. Данное свойство позволяет отличить его от других металлов.

Международное обозначение – W (Wolframium).

Как был открыт

Знакомство людей с вольфрамом датируется эпохой Средневековья.

Старатели

Вольфрам получали еще европейские старатели при восстановлении олова. Но его считали «мусором», засоряющим ценный элемент. Под влиянием вольфрамовой руды в процессе восстановления часть олова превращалась в шлак, уменьшая долю чистого вещества.

Отсюда присказка, которая появилась у старателей: «Вольфрам сжирает олово, как волк овечку».

Наука

История открытия вольфрама связана с несколькими учеными-химиками:

  • В середине 18 века швед Аксель Фредерик Кронштедт открыл тяжелый металл, названый им Tung Sten (по-шведски – тяжелый камень).
  • Через 30 лет за дело взялся его соотечественник, член академии наук страны Карл Шееле. Свободное от работы в аптеке время он отдавал экспериментам в домашней лаборатории. Его считают «отцом» не только вольфрама. В списке также барий, марганец, кислород, хлор. Из вольфрамовой руды (тунгстена) он выделил соль кислоты, не числящейся в реестрах.
  • Дальнейшую работу над соединением доверил испанским коллегам братьям Элюар. Которые и получили новый элемент.
Читайте также:
Вытяжка листового металла

Название и символ металла – Wolframium и W – предложил Йенс Якоб Берцелиус.

Этимология названия вольфрама имеет немецкие корни: Wolf Rahm («волчий крем/сливки»).

А тунгстен переименовали в честь ученого – в шеелит.

Как представлен в природе

Самородный цветной металл вольфрам на планете не встречается. Он представлен в виде руды либо минералов.

Руды состоят из соединений вольфрама с железом, марганцем, кальцием, иногда другими элементами, включая редкоземельные.

Минералы – это вкрапления в граниты (до 2%). Из них промышленное значение имеют вольфрамит (вольфрам с железом и марганцем) и шеелит (с кальцием).

Каждая тонна земной коры содержит 1,30 г вольфрама.

Физико-химические характеристики

Чистый вольфрам – в числе первых по плотности, твердости, первый по температуре плавления и кипения среди металлов. Эти физические свойства дополняет химическая стойкость даже при запредельных температурах.

Свойства атома
Название, символ, номер Вольфра́м / Wolframium (W), 74
Атомная масса
(молярная масса)
183,84(1) а. е. м. (г/моль)
Электронная конфигурация [Xe] 4f14 5d4 6s2
Радиус атома 137 пм
Химические свойства
Ковалентный радиус 170 пм
Радиус иона (+6e) 62 (+4e) 70 пм
Электроотрицательность 2,3 (шкала Полинга)
Электродный потенциал W ← W3+ 0,11 В
W ← W6+ 0,68 В
Степени окисления +2, +3, +4, +5, +6
Энергия ионизации
(первый электрон)
769,7 (7,98) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 19,25 г/см³
Температура плавления 3695 K (3422 °C, 6192 °F)
Температура кипения 5828 K (5555 °C, 10031 °F)
Уд. теплота плавления 285,3 кДж/кг
52,31 кДж/моль
Уд. теплота испарения 4482 кДж/кг 824 кДж/моль
Молярная теплоёмкость 24,27 Дж/(K·моль)
Молярный объём 9,53 см³/моль
Кристаллическая решётка простого вещества
Структура решётки кубическая
объёмноцентрированная
Параметры решётки 3,160 Å
Температура Дебая 310 K
Прочие характеристики
Теплопроводность (300 K) 162,8 Вт/(м·К)
Номер CAS 7440-33-7

При 1580°C легко куется, вытягивается до тонкой проволоки.

Данные преимущества создает структура вещества.

Тугоплавкий прочный металл, светло-серого цвета – вольфрам

На воздухе с относительной влажностью менее 60% сопротивление металла коррозии стопроцентное.

Месторождения, добыча

Месторождения вольфрамовой руды на планете не редкость, запасы оцениваются миллионами тонн.

Крупнейшими залежами располагают КНР, Казахстан, Канада, США. Меньше сырья у России, Португалии, Узбекистана, других стран.

Глобальные объемы производства – 48-51 тысяча тонн вольфрама ежегодно. Безусловный лидер Китай (80%).

Добыча ведется закрытым либо карьерным способом.

Технология получения

Вольфрамовые руды из разных мест добычи содержат 0,3-2,5% оксида металла. Поэтому промышленное получение продукта из руды начинается на обогатительных предприятиях.

Это многоступенчатый процесс:

  • Дробление руды.
  • Шлифовка.
  • Флотация.
  • Обжиг.

Содержание полезных компонентов увеличивается до 60%:

  • Чистоту концентрата повышают, расщепляя примеси гидроксидом натрия и задействуя метод ионообменной экстракции.
  • До порошка восстанавливают при 650-700°C в водородистой среде.

Тугоплавкость оказалась недостатком, исключающим классическую плавку.

Твердые формы создают методом порошковой металлургии:

  • Порошок спрессовывают.
  • Спекание проводят при 1250-1300°C в водороде.
  • Воздействуют электричеством.
  • Нагревают до 3000°C, добиваясь монолитного спекания.

Вольфрамовый порошок

Дополнительно металл очищают зонной плавкой.

Номенклатура марок металла

На основе вольфрама или с его участием металлурги выплавляют продукт десятков наименований и марок.

Среди самых распространенных – чистый вольфрам (ВЧ) и сплав с рением (ВР).

Классификация марок вольфрама основывается на составе присадок:

Название марки Вид присадки
ВА Алюминий + кремнистая щелочь
ВМ Торий + кремнистая щелочь
ВИ Окись иттрия
ВТ Окись тория
ВЛ Окись лантана

Как используется

Свойства вольфрама обозначили главного потребителя. Это металлургия. Она создает конечный продукт и исходники для других отраслей промышленности.

Порошковый вольфрам – основа либо компонент твердых, жаропрочных износоустойчивых сплавов, премиальных марок сталей.

Металл, сплавы

Из тугоплавкого металла и сплавов создают широкий ассортимент продукции:

  • Узлы и детали авиационных, ракетных двигателей.
  • Элементы электровакуумных приборов (кинескопы, нити накаливания).

Нить накаливания из вольфрама

  • Нагреватели вакуумных печей.
  • Электроды для аргонно-дуговой сварки. Они не плавятся, создают прочный сварной шов. Пригодны для материалов любого состава (цветные металлы, легированные стали, другие).
  • Емкости для радиоактивных продуктов. Здесь решающими оказались преимущества металла перед свинцом.
  • Хирургический инструментарий.
  • Характеристики металла подошли оборонному комплексу: танковая, торпедная броня, крупнокалиберные снаряды, пули. А также суперскоростные роторы гироскопов, контролирующих траекторию полета баллистических ракет.

    Вольфрам в слитках

    Соединения

    Обширен спектр применения вольфрамовых соединений:

    • Без дителлурида невозможно преобразование тепла в электричество.
    • Карбид – основа сплавов и композитов для механической обработки металлов и неметаллов. У горнодобытчиков, нефтяников, газовиков – для бурения скважин.
    • Сульфид – термостойкая (до 500°C) смазка.
    • Трехокись – материал для создания электролита топливных элементов, работающих при повышенных температурах.

    Соединения вольфрама закупают производители лаков, красок, текстиля.

    Другие формы

    Изотоп W184 – компонент сплавов с изотопами урана. Из них делают ракетные двигатели на ядерном топливе.

    Радионуклид искусственного происхождения (W185) востребован как детектор излучений (включая рентгеновское) ядерным сегментом физики и медицины.

    Значение для человека

    Тугоплавкий металл не имеет значения для человека как биологического организма.

    Опасность представляет лишь вдыхание вольфрамовой пыли.

    На рынке торгуют металлическим вольфрамом (чистота 99%) и полуфабрикатами (пруток, проволока, полоска).

    Порядок цены на металл – 50 500$ за тонну. Полуфабрикаты дороже вдвое-втрое.

    Свойства и температура плавления вольфрама

    Вольфрам — самый тугоплавкий металл. Известны разные марки этого материала, которые обладают своим особенностями, свойствами. Температура плавления вольфрама — одна из главных характеристик этого металла. По ней специалисты определяют в каких отраслях промышленности его лучше использовать.

    Вольфрам

    Краткое описание

    Вольфрам — тугоплавкий металл. В таблице Менделеева его можно найти под номером 74. Характерные качества — серый цвет, естественный металлический блеск.

    Во Франции, Великобритании и США этот материал называется tungsten, что переводится как «тяжелый камень».

    Структура и характеристики

    Кристаллы вольфрама имеют объемноцентрированную кубическую решетку. Основная форма, размеры кристаллов не изменяются, если порошок прессуется при низких температурах.

    Атомы в кубической ячейке металла расположены по всем вершинам и внутри самой ячейки. Коэффициент компактности вольфрама — 0,68.

    История открытия и изучения

    Свое название металл получил от минерала вольфрамит. Его начали добывать в XVI веке. Тогда его называли «волчьей пеной». Вольфрам часто встречался в оловянных рудах, мешал выплавлять этот металл. Он переводил его в пену шлаков.

    Первое научное упоминание о нахождении нового химического элемента появилось в 1781 году. Тогда знаменитый химик из Швеции Карл Шееле работал с минералом шеелит. Он обрабатывал его азотной кислотой, в ходе чего получил новый химический элемент с желтым оттенком. Он назвал его «тяжелым камнем». Через два года, братья Элюар получили из саксонского минерала новый металл.

    Если сравнивать защиту от ионизирующего излучения из свинца или вольфрама, второй вид металла выигрывает. Готовый защитный слой будет задерживать больше частиц при меньшем весе.

    Получение из руды и месторождения

    В природе вольфрам можно встретить окисленными отложениями. Они образуются из трехокиси этого металла, которая соединяется с кальцием, марганцем, железом. Иногда в составе можно встретить медь, свинец, торий, некоторые редкоземельные элементы.

    Минералы, насыщенные вольфрамом, чаще встречаются в грунтовых породах небольшими вкраплениями. В таком случае средняя концентрация тяжелого металла — до 2%.

    Самые крупные месторождения вольфрама находятся в США, Китае, Канаде. Среднее мировое производство за год — 50 тысяч тонн.

    Критическая отметка температуры для этого металла — 13610°C. При нагревании до таких показателей он превращается в газ.

    Промышленное получение

    Получение вольфрама промышленными предприятиями начинается с добычи руды, ее доставки на производство. Следующий этап — выделение триоксида из расходного материала. После этого он проходит процесс восстановления для получения очищенного металлического порошка. Процедуру восстановления проводят под воздействием водорода. При этом сырье нагревается до 700°C. Готовый порошок прессуется, спекается при температуре 1300°C в защитной атмосфере из водорода.

    Марки

    1. ВР — соединение вольфрама с рением.
    2. ВТ, ВИ, ВЛ — к основе добавляется присадка окиси лантана, тория, иттрия.
    3. ВРН — металл без присадок. Допускается наличие небольшого количества разных примесей.
    4. ВМ — к основе добавляются разные присадки. Основные — кремнещелочные, алюминиевые.
    5. МВ — соединение молибдена с вольфрамом. Сохраняется пластичность одновременно с повышением прочности.
    6. ВЧ — чистый металл без примесей, присадок.
    7. ВА — соединение основы с алюминием, кремнещелочными присадками.

    Лампы накаливания не просто так имеют стеклянную герметичную капсулу. Поскольку вольфрам быстро окисляется на открытом воздухе, капсула заполняется инертным газом.

    Свойства

    Чтобы понять, где лучше применять вольфрам, нужно знать свойства этого металла. Сейчас про этот материал известно достаточно информации, чтобы определить сферы его применения.

    Химические

    1. Валентность чистого металла — 6. У соединений на его основе она может изменяться от 2 до 5.
    2. Молярная масса химического элемента —183,84.
    3. Элемент имеет орбиту, состоящую из двух ярусов.

    Вольфрам — химически активный металл. Он вступает в реакции с разными веществами с образованием сложных, простых соединений. При нагревании реакции протекают быстрее. Для дополнительного ускорения реакции можно добавить водяные пары.

    Физические

    1. Цвет — серый.
    2. Прозрачность — отсутствует.
    3. Металлический блеск — есть.
    4. Твердость — 7,5 (показатель указан согласно шкале Мооса).
    5. Плотность — 19,3 г/см3.
    6. Радиоактивность — 0.
    7. Теплопроводность — 173 Вт/(м·К).
    8. Электропроводность — 55·10−9 Ом·м.
    9. Показатель твердости по Бринеллю — 488 кгс/мм².
    10. Теплоемкость — 134,4 Дж/(кг·град).
    11. Температура плавления — 3380 °C (показатель зависит от количества примесей).
    12. Сопротивление электричеству — 55·10−9 Ом·м (при условии соблюдения температурного режима в 20°C).
    13. Температура кипения — около 5555 °C.

    Лучше всего металл куется при нагревании до 1600°C.

    На основе вольфрама изготавливают тяжелые сплавы. Общее содержание основы может достигать 97%. Готовые сплавы применяются для изготовления контейнеров, в которых будут храниться, переноситься радиоактивные вещества. Главная особенность емкости — возможность поглощения части гамма-излучения.

    Сферы применения

    Вольфрам применяется при изготовлении:

    • нити накаливания;
    • электродов для аргонодуговой сварки;
    • хирургических инструментов;
    • танковой брони, оболочек для снарядов, торпед;
    • защитных костюмов, емкостей, листов от проникающего ионизирующего излучения;
    • ювелирных украшений.

    Преимущества и недостатки

    • тугоплавкость;
    • высокая прочность;
    • применение в разных сферах промышленности;
    • стойкость к большим нагрузкам после сильного нагревания;
    • экологичность.

    Из главных недостатков можно выделить низкую пластичность, окисляемость при нагревании свыше 700°, высокую цену.

    Сплавы

    Известно множество соединений на основе этого металла. Они применяются в разных сферах промышленности. Виды и сферы их применения:

    1. Карбиды — добыча горных пород, бурение скважин.
    2. Сульфиды — изготовление высокотемпературной смазки.
    3. Дителлурид — производство преобразователей тепла в электричество.

    Монокристаллы применяются в ядерной физике.

    Остальные соединения используются в качестве пигментов, катализаторов. Они используются при изготовлении высоколегированных сталей, которые нужны для производства рабочих частей разных инструментов.

    Чистый вольфрам по плотности можно сравнить с золотом 999 пробы. Раньше мошенники вкладывали стержни этого металла в золотые слитки. Определить подлинность золота без распиливания было невозможно.

    Продукция из вольфрама выделяется высоким качеством, уникальными свойствами. Она применяется в разных сферах деятельности, не имеет аналогов среди похожих материалов.

    Вольфрам – полезные свойства и особенности металла

    ВОЛЬФРАМ
    – (Wolframium), W – химический элемент 6 (VIb) группы периодической системы Д.И.Менделеева, атомный номер 74, атомная масса 183,85. Известно 33 изотопа вольфрама: от 158W до 190W. В природе обнаружено пять изотопов, три из которых являются стабильными: 180W (доля среди природных изотопов 0,120%), 182W (26,498%), 186W (28,426%), а другие два слабо радиоактивны: 183W (14,314%, Т½ = 1,1·1017 лет), 184W (30,642%, Т½ = 3·1017 лет). Конфигурация электронной оболочки – [Xe]4f145d46s2. Наиболее характерна степень окисления +6. Известны соединения со степенями окисления вольфрама +5, +4, +3, +2 и 0.
    Также по теме:
    ХИМИЯ

    Еще в 14–16 вв. горняки и металлурги в Рудных горах Саксонии отмечали, что некоторые руды нарушали процесс восстановления оловянного камня (минерала касситерита, SnO2) и приводили к зашлаковыванию расплавленного металла. На профессиональном языке того времени этот процесс характеризовали так: «Эти руды вырывают олово и пожирают его, как волк пожирает овцу». Рудокопы дали этой «надоедливой» породе названия «Wolfert» и «Wolfrahm», что в переводе означает «волчья пена» или «пена в пасти у разъяренного волка». Немецкий химик и металлург Георг Агрикола в своем фундаментальном труде Двенадцать книг о металлах

    (1556) приводит латинское название этого минерала – Spuma Lupi, или Lupus spuma, которое по существу представляет собой кальку с народного немецкого названия.

    В 1779 Питер Вульф (Peter Wulf) исследовал минерал, сейчас называемый вольфрамитом (FeWO4·x

    MnWO4), и пришел к выводу, что тот должен содержать неизвестное ранее вещество. В 1783 в Испании братья д’Эльгуйяр (Juan Jose и Fausto D’Elhuyar de Suvisa) при помощи азотной кислоты выделили из этого минерала «кислую землю» – желтый осадок оксида неизвестного металла, растворимый в аммиачной воде. В минерале также были обнаружены оксиды железа и марганца. Хуан и Фаусто прокалили «землю» с древесным углем и получили металл, который они предложили называть «вольфрамом», а сам минерал – «вольфрамитом». Таким образом, испанские химики д’Эльгуйяр первыми опубликовали сведения об обнаружении нового элемента.

    Позже стало известно, что впервые оксид вольфрама был обнаружен не в «пожирателе олова» – вольфрамите, а в другом минерале.

    В 1758 шведский химик и минералог Аксель Фредрик Кронштедт (Axel Fredrik Cronstedt) открыл и описал необычайно тяжелый минерал (CaWO4, названный в последствии шеелитом), который назвал Tung Sten, что по-шведски означает «тяжелый камень». Кронштедт был убежден, что этот минерал содержит новый, еще не открытый, элемент.

    В 1781 великий шведский химик Карл Шееле разложил «тяжелый камень» азотной кислотой, обнаружив при этом, помимо соли кальция, «желтую землю», не похожую на белую «молибденовую землю», впервые выделенную им же три года назад. Интересно, что один из братьев д’Эльгуйяр работал в то время в его лаборатории. Шееле назвал металл «tungsten», по названию минерала, из которого был впервые выделен желтый оксид. Так у одного и того же элемента появилось два названия.

    В 1821 фон Леонард предложил называть минерал CaWO4 шеелитом.

    Название вольфрам можно найти у Ломоносова; Соловьев и Гесс (1824) называют его волчец, Двигубский (1824) – вольфрамий.

    Еще в начале 20 в. во Франции, Италии и Англо-Саксонских странах элемент «вольфрам» обозначали как Tu (от tungsten). Лишь в середине прошлого столетия утвердился современный символ W.

    Как был открыт

    Знакомство людей с вольфрамом датируется эпохой Средневековья.

    Старатели

    Вольфрам получали еще европейские старатели при восстановлении олова. Но его считали «мусором», засоряющим ценный элемент. Под влиянием вольфрамовой руды в процессе восстановления часть олова превращалась в шлак, уменьшая долю чистого вещества.

    Отсюда присказка, которая появилась у старателей: «Вольфрам сжирает олово, как волк овечку».

    Наука

    История открытия вольфрама связана с несколькими учеными-химиками:

    • В середине 18 века швед Аксель Фредерик Кронштедт открыл тяжелый металл, названый им Tung Sten (по-шведски – тяжелый камень).
    • Через 30 лет за дело взялся его соотечественник, член академии наук страны Карл Шееле. Свободное от работы в аптеке время он отдавал экспериментам в домашней лаборатории. Его считают «отцом» не только вольфрама. В списке также барий, марганец, кислород, хлор. Из вольфрамовой руды (тунгстена) он выделил соль кислоты, не числящейся в реестрах.
    • Дальнейшую работу над соединением доверил испанским коллегам братьям Элюар. Которые и получили новый элемент.

    Название и символ металла – Wolframium и W – предложил Йенс Якоб Берцелиус.

    Этимология названия вольфрама имеет немецкие корни: Wolf Rahm («волчий крем/сливки»).

    А тунгстен переименовали в честь ученого – в шеелит.

    Как представлен в природе

    Самородный цветной металл вольфрам на планете не встречается. Он представлен в виде руды либо минералов.

    Руды состоят из соединений вольфрама с железом, марганцем, кальцием, иногда другими элементами, включая редкоземельные.

    Минералы – это вкрапления в граниты (до 2%). Из них промышленное значение имеют вольфрамит (вольфрам с железом и марганцем) и шеелит (с кальцием).

    Каждая тонна земной коры содержит 1,30 г вольфрама.

    Применение

    Редкость, необычность и важность обуславливают широкое использование в современной технике металла под названием Tungsten – вольфрам. Свойства и применение оправдывают высокую стоимость и востребованность. Высокие показатели температуры плавления, твердости, прочности, жаростойкости и стойкости к химическим воздействиям и коррозии, износостойкости и резальных особенностей – вот основные его козыри. Варианты использования:

    1. Нити накаливания.
    2. Легирование сталей с целью получения быстрорежущих, износостойких, жаростойких и жаропрочных железоуглеродистых сплавов, находящих применение для производства сверл и других инструментов, пуансонов, пружин и рессор, рельс.
    3. Изготовление «порошковых» твердых сплавов, применяемых в основном в качестве особо износостойких режущих, буровых или прессовочных инструментов.
    4. Электроды для аргонодуговой и контактной сварки.
    5. Изготовление деталей для рентгеновской и радиотехники, различных технических ламп.
    6. Специальные светящиеся краски.
    7. Проволока и детали для химической промышленности.
    8. Различная практичная мелочевка, к примеру, мормышки для рыбалки.

    Приобретают популярность различные сплавы, в состав которых входит вольфрам. Область применения таких материалов порой удивляет – начиная от тяжелого машиностроения и заканчивая легкой промышленностью, где изготавливаются ткани с особыми свойствами (например, огнестойкие).

    Универсальных материалов не существует. Каждый известный элемент и созданные сплавы отличаются своей уникальностью и необходимостью для определенных сфер жизни и промышленности. Однако некоторые из них обладают особыми свойствами, делающими ранее неосуществимые процессы возможными. Одним из таких металлов является вольфрам. Применение его недостаточно широко, как у стали, но каждый из вариантов предельно полезен и необходим человечеству.

    Физико-химические характеристики

    Чистый вольфрам – в числе первых по плотности, твердости, первый по температуре плавления и кипения среди металлов. Эти физические свойства дополняет химическая стойкость даже при запредельных температурах.

    Свойства атома
    Название, символ, номер Вольфра́м / Wolframium (W), 74
    Атомная масса (молярная масса) 183,84(1) а. е. м. (г/моль)
    Электронная конфигурация [Xe] 4f14 5d4 6s2
    Радиус атома 137 пм
    Химические свойства
    Ковалентный радиус 170 пм
    Радиус иона (+6e) 62 (+4e) 70 пм
    Электроотрицательность 2,3 (шкала Полинга)
    Электродный потенциал W ← W3+ 0,11 В W ← W6+ 0,68 В
    Степени окисления +2, +3, +4, +5, +6
    Энергия ионизации (первый электрон) 769,7 (7,98) кДж/моль (эВ)
    Термодинамические свойства простого вещества
    Плотность (при н. у.) 19,25 г/см³
    Температура плавления 3695 K (3422 °C, 6192 °F)
    Температура кипения 5828 K (5555 °C, 10031 °F)
    Уд. теплота плавления 285,3 кДж/кг 52,31 кДж/моль
    Уд. теплота испарения 4482 кДж/кг 824 кДж/моль
    Молярная теплоёмкость 24,27 Дж/(K·моль)
    Молярный объём 9,53 см³/моль
    Кристаллическая решётка простого вещества
    Структура решётки кубическая объёмноцентрированная
    Параметры решётки 3,160 Å
    Температура Дебая 310 K
    Прочие характеристики
    Теплопроводность (300 K) 162,8 Вт/(м·К)
    Номер CAS 7440-33-7

    При 1580°C легко куется, вытягивается до тонкой проволоки.

    Данные преимущества создает структура вещества.


    Тугоплавкий прочный металл, светло-серого цвета – вольфрам

    На воздухе с относительной влажностью менее 60% сопротивление металла коррозии стопроцентное.

    Зависимость радиуса атома металла от его порядкового номера

    Задача 1082. Чем объясняется близость атомных радиусов ниобия и тантала, молибдена и вольфрама, технеция и рения?

    Решение:

    По размеру, как атомов, так и ионов ниобий и тантал, молибден и вольфрам, технеций и рений близки друг к другу, поэтому их свойства как элементов целесообразно рассмотреть одновременно. Одинаковые объемы атомов объясняются тем, что члены VI периода — тантал, вольфрам, рений следуют в этом периоде почти сразу же за лантаноидами, у которых происходит заполнение электронами не внешнего, а третьего снаружи слоя. Это приводит к так называемому «лантаноидному сжатию» — увеличивающееся количество внутренних отрицательно заряженных электронов сильнее притягивается положительно заряженным ядром. Вследствие этого радиус атома с увеличением порядкового номера элемента не только не увеличивается, но даже несколько уменьшается.

    Строение атомов хрома, молибдена и вольфрама

    Задача 1083. Обосновать размещение хрома, молибдена и вольфрама в VI группе периодической системы. В чем проявляется сходство этих элементов с элементами главной подгруппы?

    Решение:

    Хром, молибден, и вольфрам – содержат по 6 валентных электронов, которые расположены на s-орбиталях внешнего и d-орбиталях предвнешнего слоя. Электронная конфигурация данных атомов должна иметь вид (n-1)d4ns2 , но с учетом проскока одного электрона для Сr и Мо – (n-1)d5ns1. Наличие 6 валентных электронов (электроны, способные образовывать химические связи) основной аргумент по размещению этих элементов в VI группе периодической системы, а расположение валентных электронов на s-орбиталях внешнего и d-орбиталях предвнешнего слоя – аргумент по размещению этих элементов в побочной подгруппе данной VI группы.

    Сходство этих элементов с элементами главной подгруппы проявляется в том, что все они содержат по 6 валентных электронов, способных участвовать в образовании химических связей.

    Элементы главной и побочной подгруппы находятся в высшей степени окисленности, их аналогичные соединения проявляют существенное сходство. Так, хром, расположенный в побочной подгруппе VI группы, образует кислотный оксид CrO3, близкий по свойствам к триоксиду серы SO3.

    Оба эти вещества в обычных условиях находятся в твердом состоянии и образуют при взаимодействии с водой кислоты состава H2ЭО4.

    Подобная близость свойств объясняется тем, что в высшей степени окисленности атомы элементов главных и побочных подгрупп приобретают сходное электронное строение. Например, атом хрома имеет электронную структуру 1s22s22p63s23p63d54s1.

    Когда хром находится в степени окисленности +6 (например, в оксиде CrO3), шесть электронов его атома (пять 3d- и один 4s-электрон) вместе с валентными электронами соседних атомов (в случае CrO3 — атомов кислорода) — образуют общие электронные пары, осуществляющие химические связи.

    Остальные электроны, непосредственно не участвующие в образовании связей, имеют конфигурацию 1s22s22p63s23p6, отвечающую электронной структуре благородного газа.

    Аналогично у атома серы, находящегося в степени окисленности +6 (например, в триоксиде серы SO3), шесть электронов участвуют в образовании ковалентных связей, а конфигурация остальных 1s22s22p6 также соответствует электронной структуре благородного газа.

    Технология получения

    Вольфрамовые руды из разных мест добычи содержат 0,3-2,5% оксида металла. Поэтому промышленное получение продукта из руды начинается на обогатительных предприятиях.

    Это многоступенчатый процесс:

    • Дробление руды.
    • Шлифовка.
    • Флотация.
    • Обжиг.

    Содержание полезных компонентов увеличивается до 60%:

    • Чистоту концентрата повышают, расщепляя примеси гидроксидом натрия и задействуя метод ионообменной экстракции.
    • До порошка восстанавливают при 650-700°C в водородистой среде.

    Тугоплавкость оказалась недостатком, исключающим классическую плавку.

    Твердые формы создают методом порошковой металлургии:

    • Порошок спрессовывают.
    • Спекание проводят при 1250-1300°C в водороде.
    • Воздействуют электричеством.
    • Нагревают до 3000°C, добиваясь монолитного спекания.


    Вольфрамовый порошок
    Дополнительно металл очищают зонной плавкой.

    Номенклатура марок металла

    На основе вольфрама или с его участием металлурги выплавляют продукт десятков наименований и марок.

    Среди самых распространенных – чистый вольфрам (ВЧ) и сплав с рением (ВР).

    Классификация марок вольфрама основывается на составе присадок:

    Название марки Вид присадки
    ВА Алюминий + кремнистая щелочь
    ВМ Торий + кремнистая щелочь
    ВИ Окись иттрия
    ВТ Окись тория
    ВЛ Окись лантана

    Как используется

    Свойства вольфрама обозначили главного потребителя. Это металлургия. Она создает конечный продукт и исходники для других отраслей промышленности.

    Порошковый вольфрам – основа либо компонент твердых, жаропрочных износоустойчивых сплавов, премиальных марок сталей.

    Металл, сплавы

    Из тугоплавкого металла и сплавов создают широкий ассортимент продукции:

    • Узлы и детали авиационных, ракетных двигателей.
    • Элементы электровакуумных приборов (кинескопы, нити накаливания).


    Нить накаливания из вольфрама

  • Нагреватели вакуумных печей.
  • Электроды для аргонно-дуговой сварки. Они не плавятся, создают прочный сварной шов. Пригодны для материалов любого состава (цветные металлы, легированные стали, другие).
  • Емкости для радиоактивных продуктов. Здесь решающими оказались преимущества металла перед свинцом.
  • Хирургический инструментарий.
  • Характеристики металла подошли оборонному комплексу: танковая, торпедная броня, крупнокалиберные снаряды, пули. А также суперскоростные роторы гироскопов, контролирующих траекторию полета баллистических ракет.


    Вольфрам в слитках

    Соединения

    Обширен спектр применения вольфрамовых соединений:

    • Без дителлурида невозможно преобразование тепла в электричество.
    • Карбид – основа сплавов и композитов для механической обработки металлов и неметаллов. У горнодобытчиков, нефтяников, газовиков – для бурения скважин.
    • Сульфид – термостойкая (до 500°C) смазка.
    • Трехокись – материал для создания электролита топливных элементов, работающих при повышенных температурах.

    Соединения вольфрама закупают производители лаков, красок, текстиля.

    Другие формы

    Изотоп W184 – компонент сплавов с изотопами урана. Из них делают ракетные двигатели на ядерном топливе.

    Радионуклид искусственного происхождения (W185) востребован как детектор излучений (включая рентгеновское) ядерным сегментом физики и медицины.

    Использование вольфрама

    Использование вольфрама встречается в следующих областях:

    Где применяется вольфрам высокой плотности? Классификация сплавов

    Характеристики вольфрама

    Вольфрам является переходным металлом светло-серого цвета. Имеет внешнее сходство со сталью. В связи с обладанием достаточно уникальными свойствами, данный элемент является очень ценным и редким материалом, чистый вид которого в природе отсутствует. Вольфрам обладает:

    Все это делает вольфрам очень прочным металлом, который не поддается механическим повреждениям. Но наличие таких уникальных свойств не исключает присутствие недостатков, которые также есть у вольфрама. К ним относятся:

    • высокая ломкость при воздействии на него очень низких температур;
    • высокая плотность, что затрудняет процесс его обработки;
    • низкая сопротивляемость кислотам при низких температурах.

    Видео

    ПРОИСХОЖДЕНИЕ

    Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисью вольфрама WO3 с оксидами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Промышленное значение имеют вольфрамит (вольфрамат железа и марганца nFeWO4 * mMnWO4 — соответственно, ферберит и гюбнерит) и шеелит (вольфрамат кальция CaWO4). Вольфрамовые минералы обычно вкраплены в гранитные породы, так что средняя концентрация вольфрама составляет 1—2 %.

    Наиболее крупными запасами обладают Казахстан, Китай, Канада и США; известны также месторождения в Боливии, Португалии, России, Узбекистане и Южной Корее. Мировое производство вольфрама составляет 49—50 тысяч тонн в год, в том числе в Китае 41, России 3,5; Казахстане 0,7, Австрии 0,5. Основные экспортёры вольфрама: Китай, Южная Корея, Австрия. Главные импортёры: США, Япония, Германия, Великобритания. Также есть месторождения вольфрама в Армении и других странах.

    Физические свойства вольфрама:

    • твердый тугоплавкий и тяжелый металл (вес вольфрама почти в 2 раза больше, чем у свинца);
    • масса вольфрама составляет 184 г/моль;
    • сплавы W отличаются прочностью, твердостью и высоким сопротивлением к высоким температурам;
    • цвет зависит от способа получения (порошок имеет серый, темно-серый или черный цвет, сплавленный W – серый оттенок, напоминающий цвет платины);
    • плотность вольфрама при нормальних условиях равна 19, 25 г/м3.

    Свойства элемента

    Как уже было сказано ранее, вольфрам – это один из самых тугоплавких металлов. Он имеет блестящий светло-серый цвет. Его температура плавления 3422°С, а кипения – 5555°C, плотность в чистом виде – 19,25 г/см 3 , а твердость 488 кг/мм². Это один из самых тяжелых металлов, обладающий высокой коррозионной стойкостью. Он практически не растворим в серной, соляной и плавиковой кислотах, но быстро вступает в реакцию с перекисью водорода. Что за металл вольфрам, если он не реагирует с расплавленными щелочами? Вступая в реакцию с гидроксидом натрия и кислородом, он образует два соединения – вольфрамат натрия и обычную воду Н2О. Интересно, что при повышении температуры вольфрам саморазогревается, тогда процесс происходит намного активнее.

    Марки вольфрама

    1. ВЧ – чистый вольфрам, в котором отсутствуют какие-либо присадки;
    2. ВА – металл, имеющий в своем составе алюминиевую и кремнещелоную присадку, которые наделяют его дополнительными свойствами;
    3. ВМ – металл, имеющий в своем составе ториевую и кремнещелочную присадку;
    4. ВТ – вольфрам, в составе которого содержится оксид тория в качестве присадки, что существенно повышает эмиссионные свойства металла;
    5. ВИ – металл, содержащий оксид иттрия;
    6. ВЛ – вольфрам с окисью лантана, что также повышает эмиссионные свойства;
    7. ВР – сплав рения и вольфрама;
    8. ВРН – какие-либо присадки в металле отсутствуют, однако могут присутствовать примеси в больших объемах;
    9. МВ – сплав вольфрама с молибденом, что существенно повышает прочность после отжига, сохраняя при этом пластичность.

    Использование, основанное на способности защищать от радиации

    Коллиматоры из вольфрама в хирургии.

    • По этому критерию вольфрамовые сплавы опережают чугун, сталь, свинец и воду, поэтому из металла делают коллиматоры и защитные экраны, которые используются при радиотерапии. Сплавы из вольфрама не подвержены деформации и отличаются высокой надежностью. Применение многолепестковых коллиматоров дает возможность направить излучение на определенный участок пораженной ткани. Во время терапии в первую очередь делают рентгеновские снимки, чтобы локализовать расположение и определить характер опухоли. Затем лепестки коллиматора перемещаются электродвигателем в нужное положение. Может быть задействовано 120 лепестков, с помощью которых создается поле, повторяющее форму опухоли. Далее на пораженный участок направляются лучи, имеющие высокую радиацию. При этом опухоль получает облучение посредством того, что многолепестковый коллиматор вращается вокруг пациента. Чтобы защитить от радиации соседние здоровые ткани и окружающую среду, коллиматор должен обладать высокой точностью.
    • Разработаны специальные кольцевые коллиматоры из вольфрама для радиохирургии, облучение которых направлено на голову и шею. Прибор осуществляет высокоточную фокусировку гамма-излучения. Также вольфрам входит в состав пластин для компьютерных томографов, экранирующих элементов для детекторов и линейных ускорителей, дозиметрического оборудования и приборов неразрушающего контроля, емкостей для радиоактивных веществ. Вольфрам используется в устройствах для бурения. Из него делают экраны для защиты погружающихся инструментов от рентгеновского и гамма-излучении.

    История открытия вольфрама

    Итак, кто открыл вольфрам? Братья Элюар? И да, и нет. Да — потому, что они первые сообщили об этом открытии в печати. Нет — потому, что за два года до этого — в 1781 г.— знаменитый шведский ученый Карл Вильгельм Шееле обнаружил такую же точно «желтую землю», обрабатывая азотной кислотой другой минерал. Его называли просто «tungsten», т. е. «тяжелый камень» (по-шведски tung — тяжелый, sten — камень). Шееле далее нашел, что эта «земля» отличается от аналогичной молибденовой по цвету и некоторым другим свойствам, а в минерале она связана с окисью кальция. В честь Шееле минерал тунгстен переименовали в «шеелит». Остается добавить, что один из братьев Элюар был учеником Шееле и в 1781 г. работал в его лаборатории.

    Кто же открыл вольфрам?

    Обе стороны проявили в этом вопросе должное благородство: Шееле никогда не претендовал на открытие вольфрама, а братья Элюар не настаивали на своем приоритете. НАЗВАНИЕ «ВОЛЬФРАМОВАЯ БРОНЗА» ОБМАНЧИВО. Нередко приходится слышать о вольфрамовых бронзах. Что это за металлы? Внешне оип очень красивы. Золотистая вольфрамовая бронза имеет состав Na2О*WO2*VVO3, а синяя — Na20*W02*4W03; пурпурно-красная и фиолетовая занимают промежуточное положение — соотношение W03 к WO2 в них меньше четырех, по больше единицы. Как видно из формул, эти вещества не содержат ни меди, ни цинка, ни олова, т. е., строго говоря, они вовсе не бронзы. Они вообще не сплавы, так как здесь нет чисто металлических соединений: и вольфрам, и натрий окислены. Бронзу они, однако, напоминают не только цветом и блеском, но и твердостью, устойчивостью к химическим реагентам и большой электропроводностью. ПЕРСИКОВЫЙ ЦВЕТ. Приготовить эту краску было очень трудно: она не красная и не розовая, а какого-то промежуточного цвета и с зеленоватым оттенком. По преданию, для того чтобы ее открыть, пришлось провести около 8000 опытов с различными металлами и минералами. В XVII в. в персиковый цвет окрашивали наиболее дорогие фарфоровые изделия для китайского императора на заводе в провинции Шаньси. Когда секрет изготовления этой краски был открыт, оказалось, что ее основу составляет окись вольфрама. ПОХОЖЕ НА СКАЗКУ. Это случилось в 1911 г. В провинцию Юньнань приехал из Пекина студент по имени Ли. Целыми днями пропадая в горах, он искал какой-то камень, по его словам — оловянный. Но ничего не находил. У хозяина дома, где поселился студент, была молодая дочь Сяоми. Девушка жалела неудачливого искателя особых камней и вечером, подавая ему ужин, рассказывала незамысловатые истории. В одной из них речь шла о необыкновенной печи, построенной из темных камней, срывавшихся со скалы прямо на задний двор их Дома. Печь оказалась очень удачной — она исправно служила хозяевам многие годы. Сяоми даже подарила студенту один из этих камней — коричневый, обкатанный, тяжелый, как свинец. Оказалось, что это был чистый вольфрамит. ОБ ИЗОТОПАХ ВОЛЬФРАМА. Природный вольфрам состоит из пяти стабильных изотопов с массовыми числами 180, 182, 183, 184 (самый распространенный, его доля 30,64%) и 186. Из довольно многочисленных искусственных радиоактивных изотопов элемента № 74 практически важны только три: вольфрам-181 с периодом полураспада 145 дней, вольфрам-185 (74,5 дня) и вольфрам-187 (23,85 часа). Все три эти изотопа образуются в ядерных реакторах при обстреле нейтронами природной смеси изотопов вольфрама.

    Химические свойства

    Валентность от 2 до 6. Наиболее устойчив 6-валентный вольфрам. 3- и 2-валентные соединения вольфрама неустойчивы и практического значения не имеют.

    Вольфрам имеет высокую коррозионную стойкость: при комнатной температуре не изменяется на воздухе; при температуре красного каления медленно окисляется в оксид вольфрама VI; в соляной, серной и плавиковой кислотах почти не растворим. В азотной кислоте и царской водке окисляется с поверхности. В смеси азотной и плавиковой кислоты растворяется, образуя вольфрамовую кислоту. Из соединений вольфрама наибольшее значение имеют: триоксид вольфрама или вольфрамовый ангидрид, вольфраматы, перекисные соединения с общей формулой Me2WOX, а также соединения с галогенами, серой и углеродом. Вольфраматы склонны к образованию полимерных анионов, в том числе гетерополисоединений с включением других переходных металлов.

    Свойства важнейших соединений вольфрама

    Среди важнейших соединений вольфрама – его оксид, хлорид, карбид и паравольфрамат аммония.

    Оксид вольфрама(VI) WO3 – кристаллическое вещество светло-желтого цвета, при нагревании становящееся оранжевым, температура плавления 1473° С, кипения – 1800° С. Соответствующая ему вольфрамовая кислота неустойчива, в водном растворе в осадок выпадает дигидрат, теряющий одну молекулу воду при 70–100° С, а вторую – при 180–350° С. При реакции WO3 со щелочами образуются вольфраматы.

    Анионы вольфрамовых кислот склонны к образованию полисоединений. При реакции с концентрированными кислотами образуются смешанные ангидриды:

    При взаимодействии оксида вольфрама с металлическим натрием образуется нестехиометрический вольфрамат натрия, носящий название «вольфрамовая бронза»:

    При восстановлении оксида вольфрама водородом в момент выделения образуются гидратированные оксиды со смешанной степенью окисления – «вольфрамовые сини» WO3–n(OH)n, n = 0,5–0,1.

    Оксид вольфрама(VI) полупродукт в производстве вольфрама и его соединений. Является компонентом некоторых промышленно важных катализаторов гидрирования и пигментов для керамики.

    Высший хлорид вольфрама WCl6 образуется при взаимодействии оксида вольфрама (или металлического вольфрама) с хлором (так же как и с фтором) или тетрахлоридом углерода. Он отличается от других соединений вольфрама низкой температурой кипения (347° С). По своей химической природе хлорид является хлорангидридом вольфрамовой кислоты, поэтому при взаимодействии с водой образуются неполные хлорангидриды, при взаимодействии со щелочами – соли. В результате восстановления хлорида вольфрама алюминием в присутствии монооксида углерода образуется карбонил вольфрама:

    Карбид вольфрама WC получается при взаимодействии порошкового вольфрама с углем в восстановительной атмосфере. Твердость, сравнимая с алмазом, определяет сферу его применения.

    Вольфрамат аммония (NH4)2WO4 устойчив только в аммиачном растворе. В разбавленной соляной кислоте в осадок выпадает паравольфрамат аммония (NH4)10H2W12O42, являющийся основным полупродуктом вольфрама на мировом рынке. Паравольфрамат аммония легко разлагается при нагревании:

    Мировые запасы

    Мировые подтверждённые запасы вольфрама составляют 2,6 млн. т. Выявленные ресурсы составляют 12,5 млн. т. Прогнозные ресурсы оцениваются в 9,5 млн. т. Свыше 60 стран мира обладают месторождениями данного металла:

    • Китай – 7,5 млн. т.
    • Казахстан – 3,1 млн. т.
    • Россия – 3 млн. т.
    • Канада – 1,7 млн. т.
    • США – 0,8 млн. т.
    • Австралия – 0,7 млн. т.
    • Боливия – 0,5 млн. т.

    Надо отметить, что целый ряд стран мирового сообщества обладает месторождениями, непригодными для освоения, вследствие своей нерентабельности. В то время как пять ведущих имеют на своих территориях более 70% осваиваемых запасов.

    Вольфрам металл. Свойства вольфрама. Применение вольфрама

    История открытия и изучения

    Свое название металл получил от минерала вольфрамит. Его начали добывать в XVI веке. Тогда его называли «волчьей пеной». Вольфрам часто встречался в оловянных рудах, мешал выплавлять этот металл. Он переводил его в пену шлаков.

    Первое научное упоминание о нахождении нового химического элемента появилось в 1781 году. Тогда знаменитый химик из Швеции Карл Шееле работал с минералом шеелит. Он обрабатывал его азотной кислотой, в ходе чего получил новый химический элемент с желтым оттенком. Он назвал его «тяжелым камнем». Через два года, братья Элюар получили из саксонского минерала новый металл.

    Если сравнивать защиту от ионизирующего излучения из свинца или вольфрама, второй вид металла выигрывает. Готовый защитный слой будет задерживать больше частиц при меньшем весе.


    Вольфрамит (Фото: Instagram / lopatkin_oleg)

    Вольфрам металл. Свойства вольфрама. Применение вольфрама

    Свойства вольфрама

    Вольфрам – это металл. Его нет в воде морей, нет в воздухе, да и в земной коре всего 0,0055%. Таков вольфрам, элемент, стоящий на 74-ой позиции в таблице Менделеева. Для промышленности его «открыла» Всемирная выставка во французской столице. Она состоялась в 1900-ом году. В экспозиции была представлена сталь с добавлением вольфрама.

    Состав был настолько тверд, что мог разрезать любой материал. Сплав оставался «непобедимым» даже при температурах в тысячи градусов, поэтому был назван красностойким. Производители разных государств, посетившие выставку, взяли разработку на вооружение. Производство лигированной стали приобрело мировой масштаб.

    Интересно, что сам элемент обнаружили еще в 18-ом веке. В 1781-ом Швед Шеелер проводил опыты с минералом тунгстен. Химик решил поместить его в азотную кислоту. В продуктах разложения ученый и обнаружил неизвестный металл серого цвета с серебристым отливом. Минерал, над которым проводились опыты, позже переименовали в шеелит, а новый элемент назвали вольфрам.

    Однако, на изучение его свойств ушло немало времени, поэтому и достойное применение металлу нашли гораздо позже. Название же выбрали сразу. Слово вольфрам существовало и раньше. Испанцы называли так один из минералов, встречавшихся на месторождениях страны.

    В состав камня, действительно входил элемент №74. Внешне металл порист, как будто вспенен. Поэтому пришлась кстати еще одна аналогия. В немецком языке вольфрам буквально означает «волчья пена».

    Температура плавления металла соперничает с водородом, а он – самый стойкий к температурам элемент. Поэтому, и установить показатель размягчения вольфрама не могли целых сто лет. Не было печей, способных накаляться до нескольких тысяч градусов.

    Когда же «выгоду» серебристо-серого элемента «раскусили», его начали добывать в промышленных масштабах. Для выставки 1900-го года, металл извлекли по старинке с помощью азотной кислоты. Впрочем, фольфрам и сейчас так добывают.

    Добыча вольфрама

    Чаще всего, сначала получают из отходов руд триоксид вещества. Его, при 700 градусах обрабатывают, получая чистый металл в виде пыли. Чтобы размягчить частицы приходится прибегать как раз к водороду. В нем-то вольфрам переплавляют при трех тысячах градусов Цельсия.

    Сплав идет на резцы, труборезы, фрезы. Инструменты для обработки металлов с применением вольфрама повышают точность изготовления деталей. При воздействии на металлические поверхности высоко трение, а это значит, что рабочие плоскости сильно нагреваются. Режущие и полирующие станки без элемента №74 могут и сами оплавится. Это делает срез неточным, несовершенным.

    Вольфрам не только сложно расплавить, но и обработать. В шкале твердости Мооса металл занимает девятую позицию. Столько же баллов у корунда, из крошек которого делают, к примеру, нождачку. Тверже только алмаз. Поэтому, с его помощью вольфрам и обрабатывают.

    Применение вольфрама

    «Непоколебимость» 74-го элемента привлекает ювелиров. Изделия из сплавов с серо-серебристым металлом невозможно поцарапать, согнуть, поломать, если, конечно, не скрести по поверхности кольца или браслета теми же бриллиантами.

    У ювелирных украшений из фольфрама есть и еще один бесспорный плюс. Они не вызывают аллергических реакций, в отличие от золота, серебра, платины и, уж тем более, их сплавов с цинком или палладием. Для украшений используют карбид вольфрама, то есть его соединение с углеродом.

    Оно признано самым твердым сплавом в истории человечества. Его отполированная поверхность прекрасно отражает свет. Ювелиры называют ее «серым зеркалом».

    Кстати, ювелирных дел мастера обратили внимание на вольфрам после того, как из этого вещества в середине 20-го столетия стали изготавливать сердцевины пуль, снарядов и пластины для бронежилетов.

    Жалобы клиентов на ломкость высших проб золота и серебряных украшений, заставили ювелиров вспомнить о новом элементе и попытаться его применить в своей отрасли. К тому же, цены на золото стали колебаться. Вольфрам стал альтернативой желтому металлу, который перестали воспринимать, как предмет капиталовложения.

    Будучи драгоценным металлом, вольфрам стоит немалых денег. За килограмм просят не меньше 50-ти долларов на оптовом рынке. В год мировая промышленность затрачивает 30 тысяч тонн элемента №74. Более 90% поглощает металлургическая отрасль.

    Только из вольфрама изготавливают контейнеры для хранения отходов ядерного производства. Металл не пропускает губительные лучи. Редкий элемент добавляют в сплавы для изготовления хирургических инструментов.

    То, что не идет на металлургические цели, забирает химическая промышленность. Соединения вольфрама с фосфором, к примеру, — основа лаков и красок. Они не разрушаются, не тускнеют от солнечных лучей.

    А раствор вольфромата натрия не поддается влаге и огню. Становится ясно, чем пропитывают водонепроницаемые и огнеупорные ткани для костюмов водолазов и пожарных.

    Месторождения вольфрама

    В России несколько месторождений вольфрама. Они расположены на Алтае, Дальнем Востоке, Северном Кавказе, Чукотки и в Бурятии. За пределами страны металл добывают в Австралии, США, Боливии, Португалии, Южной Кореи и КНР.

    В Поднебесной даже есть легенда о молодом исследователе, который приехал в Китай искать оловянный камень. Студент поселился в одном из домов Пекина.

    После бесплодных поисков, парень любил послушать рассказы дочери хозяина жилища. В один из вечеров она поведала историю темных камней, из которых была сложена домашняя печь. Оказалось, что глыбы падают со скалы на задний двор строения. Так, студент не нашел олово, зато, отыскал вольфрам.

    Получение из руды и месторождения

    В природе вольфрам можно встретить окисленными отложениями. Они образуются из трехокиси этого металла, которая соединяется с кальцием, марганцем, железом. Иногда в составе можно встретить медь, свинец, торий, некоторые редкоземельные элементы.

    Минералы, насыщенные вольфрамом, чаще встречаются в грунтовых породах небольшими вкраплениями. В таком случае средняя концентрация тяжелого металла — до 2%.

    Самые крупные месторождения вольфрама находятся в США, Китае, Канаде. Среднее мировое производство за год — 50 тысяч тонн.

    Критическая отметка температуры для этого металла — 13610°C. При нагревании до таких показателей он превращается в газ.

    Самая высокая точка плавления из всех металлов

    Одним из самых впечатляющих и полезных свойств вольфрама является его высокая температура плавления, самый высокий из всех металлических элементов. Чистый вольфрам плавится при колоссальной температуре 3422 градуса по Цельсию и не закипает, пока температура не достигнет 5555 градусов Цельсия, что соответствует температуре фотосферы солнца.


    Так выглядит вольфрам

    Для сравнения, железо имеет температуру плавления 1538 градусов по Цельсию, а золото превращается в жидкость при температуре всего 1064,18 градусов по Цельсию.

    Все металлы имеют относительно высокие температуры плавления, потому что их атомы удерживаются вместе прочными металлическими связями. Металлические связи настолько сильны, потому что они разделяют электроны на весь трехмерный массив атомов. Вольфрам дольше других металлов из-за необычной прочности и направленности его металлических связей.

    Почему это важно? Подумайте об Эдисоне, который работал над нитью для лампы накаливания. Ему нужен был материал, который не только излучает свет, но и не тает от тепла.

    Эдисон экспериментировал с множеством различных материалов накаливания, включая платину, иридий и бамбук, но это был другой американский изобретатель, Уильям Кулидж, которому приписывают создание вольфрамовых волокон, используемых в большинстве лампочек на протяжении 20 века.

    Высокая температура плавления вольфрама имеет и другие преимущества, например, когда он смешивается в виде сплава с такими материалами, как сталь. Вольфрамовые сплавы наносятся на секции ракет и ракет, которые должны выдерживать сильнейшее нагревание, включая сопла двигателей, которые выбрасывают взрывные потоки ракетного топлива.

    Промышленное получение

    Получение вольфрама промышленными предприятиями начинается с добычи руды, ее доставки на производство. Следующий этап — выделение триоксида из расходного материала. После этого он проходит процесс восстановления для получения очищенного металлического порошка. Процедуру восстановления проводят под воздействием водорода. При этом сырье нагревается до 700°C. Готовый порошок прессуется, спекается при температуре 1300°C в защитной атмосфере из водорода.

    Способы получения вещества

    Вольфрам, как и большое количество других элементов из редкой группы, нельзя просто так найти в природе. Именно по этой причине добыча такого металла не применяется в строительстве больших промышленных зданий. Сам процесс получения такого металла условно разделён на несколько стадий:

    • добыча руды, которая включает в свой состав такой редкий металл;
    • создание полноценных условий для дальнейшего выделения вольфрама из перерабатываемых компонентов;
    • концентрирование материала в качестве раствора или же осадка;
    • процесс очищения полученного вида химического соединения;
    • процесс получения более чистого вещества.

    Более сложным будет процесс изготовления компактного материала, например, вольфрамовой проволоки. Главная трудность такого вещества будет заключена в том, что запрещено допускать даже малейшее попадание в него особых примесей, которые способны резко ухудшить плавкие свойства и прочность металла.

    Марки

    1. ВР — соединение вольфрама с рением.
    2. ВТ, ВИ, ВЛ — к основе добавляется присадка окиси лантана, тория, иттрия.
    3. ВРН — металл без присадок. Допускается наличие небольшого количества разных примесей.
    4. ВМ — к основе добавляются разные присадки. Основные — кремнещелочные, алюминиевые.
    5. МВ — соединение молибдена с вольфрамом. Сохраняется пластичность одновременно с повышением прочности.
    6. ВЧ — чистый металл без примесей, присадок.
    7. ВА — соединение основы с алюминием, кремнещелочными присадками.

    Лампы накаливания не просто так имеют стеклянную герметичную капсулу. Поскольку вольфрам быстро окисляется на открытом воздухе, капсула заполняется инертным газом.

    Лампа накаливания (Фото: Instagram / climberam)

    Свойства атома вольфрама:

    200 Свойства атома
    201 Атомная масса (молярная масса) 183,84(1) а.е.м. (г/моль)
    202 Электронная конфигурация 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5d4
    6s2
    203 Электронная оболочка K2 L8 M18 N32 O12 P2 Q0 R0
    204 Радиус атома (вычисленный) 193 пм
    205 Эмпирический радиус атома* 135 пм
    206 Ковалентный радиус* 162 пм
    207 Радиус иона (кристаллический) W4+
    80 (6) пм,

    (в скобках указано координационное число – характеристика, которая определяет число ближайших частиц (ионов или атомов) в молекуле или кристалле)

    Свойства

    Чтобы понять, где лучше применять вольфрам, нужно знать свойства этого металла. Сейчас про этот материал известно достаточно информации, чтобы определить сферы его применения.

    Химические

    1. Валентность чистого металла — 6. У соединений на его основе она может изменяться от 2 до 5.
    2. Молярная масса химического элемента —183,84.
    3. Элемент имеет орбиту, состоящую из двух ярусов.

    Вольфрам — химически активный металл. Он вступает в реакции с разными веществами с образованием сложных, простых соединений. При нагревании реакции протекают быстрее. Для дополнительного ускорения реакции можно добавить водяные пары.

    Физические

    1. Цвет — серый.
    2. Прозрачность — отсутствует.
    3. Металлический блеск — есть.
    4. Твердость — 7,5 (показатель указан согласно шкале Мооса).
    5. Плотность — 19,3 г/см3.
    6. Радиоактивность — 0.
    7. Теплопроводность — 173 Вт/(м·К).
    8. Электропроводность — 55·10−9 Ом·м.
    9. Показатель твердости по Бринеллю — 488 кгс/мм².
    10. Теплоемкость — 134,4 Дж/(кг·град).
    11. Температура плавления — 3380 °C (показатель зависит от количества примесей).
    12. Сопротивление электричеству — 55·10−9 Ом·м (при условии соблюдения температурного режима в 20°C).
    13. Температура кипения — около 5555 °C.

    Лучше всего металл куется при нагревании до 1600°C.

    На основе вольфрама изготавливают тяжелые сплавы. Общее содержание основы может достигать 97%. Готовые сплавы применяются для изготовления контейнеров, в которых будут храниться, переноситься радиоактивные вещества. Главная особенность емкости — возможность поглощения части гамма-излучения.

    Вольфрам (Фото: Instagram / chemical_language)

    Применение

    В применении тугоплавкого металла соперничают металлообрабатывающая, нефтехимическая, мебельная промышленности.

    Вольфрам используют в производства электродов для аргонно-дуговой сварки.

    Качественная быстрорежущая сталь почти всегда имеет в составе вольфрам.

    Светящаяся нить накаливания в осветительных лампах, аноды и катоды в электронных приборах — это чистый вольфрам.


    Вольфрамовые нити накаливания

    Победит, известный советский сплав, на 90% состоит из карбида вольфрама (WC). Победитовые сверла известны многим «рукодельным» мужчинам.

    Металл входит в состав тяжелых сплавов, которые применяют в производстве бронебойных снарядов, гироскопов для баллистических ракет.

    Рекомендуем: МАРГАНЕЦ — мечта сталелитейщиков

    Начали осваивать и ювелиры тяжелый металл — он гипоаллергенный, тяжелый и прочный.

    К сведению: у вольфрама и золота плотности почти одинаковые. Это использовали жуликоватые мастера, «начиняя» золотые слитки дешевым вольфрамом.

    Наночастицы WO3 нашли применение в медицине. Их антимикробные свойства используют для очистки сточных вод. В компьютерной томографии наночастицы WO3 применяют, как контрастный агент.

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    gmnu-nazarovo.ru
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: