Вакуумный отжиг нержавейки

Высокотемпературная вакуумная закалка и цементация

До сих пор, на многих машиностроительных предприятиях, применяется классическая технология улучшения стальных изделий. Она представляет собой нагрев под закалку в окислительной или защитной атмосфере, охлаждение деталей в воде, масле или полимере и последующий отпуск в печах с окислительной атмосферой. На выходе получаются изделия с короблением поверхности до 0,2 мм. и чёрной пленкой, которая является результатом образования оксидов на металле. У таких деталей одна дорога — в цех механической доводки геометрии поверхностей. Избежать образования окислов на поверхности можно, используя защитные атмосферы эндо- и экзогаза, азота и др. Но коробление всегда будет являться обязательным атрибутом нагрева и закалки сталей.

Современные технологии позволяют значительно уменьшить изменения геометрических размеров поверхностей, используя более плавный нагрев деталей и используя в качестве закалочных сред более мягкие охладители. Это достигается при вакуумном нагреве с охлаждением в потоке газа.

Снижение давления до уровня ≤ 5 x 10−5 атм., приводит к тому, что количество оставшегося кислорода в рабочем пространстве печи снижается и нагрев в такой атмосфере происходит без образования окислов на поверхности деталей. Более высокой чистоты термообработки можно достичь при подготовке поверхности деталей — предварительном обжиге, для максимального удаления влаги с поверхности, если такая имеется. Для этого детали пропускают через печь предварительного окисления с температурой около 600 оС, когда еще обезуглероживание не начинается. Как правило, такая печь предусмотрена в линии вакуумной термообработки. Она имеет еще одно назначение — обезуглероживание поверхности перед цементацией. По утверждению зарубежных коллег, предварительное обезуглероживание поверхности стали увеличивает скорость цементации на несколько десятков процентов.

В вакууме теплообмен осуществляется за счет излучения, так называемый радиационный нагрев. Но он происходит эффективно лишь тогда, когда излучение становится видимым, т.е. при температурах, превышающих 600 оС. При более низких температурах для ускорения нагрева используют специальный газ-заполнитель рабочего пространства печи, например азот. При использовании такого газа, время нагрева сокращается на треть.

Использование газовой атмосферы в низкотемпературном интервале нагрева (конвективный нагрев) повышает однородность прогрева изделий, соответственно позволяет снизить уровень термических напряжений, вызывающих коробление. Кроме сокращения времени нагрева и снижения коробления, преимуществом использования конвективного нагрева является возможность применение более плотной загрузки, т.е. повышение производительности.

Также газ-заполнитель может использоваться в качестве закалочной среды и среды для отпуска, т.е. все операции закалки (нагрев под закалку и закалка) могут производиться на одном и том же технологическом оборудовании — вакуумной печи.

Вакуумные печи для отжига

В условиях вакуума возможно более быстрое достижение температуры кипения и плавления. Вакуумный отжиг происходит путем нагрева обрабатываемого сырья до критических точек температурного режима и выше них. После действия температуры в течение определенного времени производится плавное остужение детали. Такая обработка обуславливает равномерность структуры изделия не только снаружи, но и в сечении.

Отжиг способствует снижению показателя твердости материала, удалению напряжений, наклепа и химической неоднородности. Также повышаются показатели обрабатываемости сырья. В вакууме возможна процедура дегазации, которая обеспечивает улучшение всех характеристик заготовки. Вакуумные печи для отжига обеспечивают откачку воздуха в рабочем объеме, а также температурный режим от 700°С. Оборудование дополнительно оснащено специальным водяным охлаждением принудительного характера.

Высокотемпературная вакуумная закалка и цементация

При ТО и ХТО в углеродсодержащей среде при пониженном давлении не наблюдается окисления и обезуглероживания стали па протяжении всего цикла термической обработки; появ­ляется возможность значительного сокращения длительности про­цесса за счет активации поверхности и повышения температуры насыщения. Наиболее перспективна вакуумная ТО и ХТО для сталей с малой склон­ностью к росту зерна.

Технологическими параметрами процесса наряду с температуройт нагрева и длительностью выдержки является состав атмосферы и давление. Содержание углерода в цементованном слое регулируется цикличностью подачи цементирующего газа и парциальным давлением метана (газа – карбюризатора) в печи. Конкретные режимы подбирают в зависимости от марки стали и типа деталей.

Процесс цементации включает следующие этапы: загрузку деталей в вакуумную печь типа СНВ (состоящую из камеры цементации, охлаждения и встроенного закалочного бака) и создание вакуума 1 —10 Па, нагрев до заданной температуры (при цементации 1000-1100оС), выдержку для дегазации и активации поверхности деталей; подачу углеродсодержащего газа (метана) в случае цементации и выдержку деталей для прогрева и насыщения (при Ц); охлаждение садки в вакуумном масле или в азоте, разгрузку печи. Ускорение процесса при вакуумной цементации весьма значительно: слой 0,7—0,8 мм для стали 12ХНЗА достигается за 2,5 час.

Читайте также:
Водяной резак по металлу своими руками

Для вакуумной цементации не требуется газа-носителя (эндогаза, экзо-эндогаза), в печь подается только очищенный природный газ, реже пропан или бутан. Печи оснащены блоками подготовки и дозирования газов, контроля состава и парциального давления газов. Печи обеспечивают высокую скорость нагрева и охлаждения садки и возможность проведения процесса термообработки при сравнительно невысоком вакууме с нагревом до 22000С. В России вакуумные печи изготавливают конструкции ВНИИЭТО.

Процесс вакуумной цементации включает 2 периода:

1. Активный период насыщения (рис. 76), в течение которого в печь подают насыщающий газ до создания оптимального давления 1,3-104—3,9-104 Па. Для поддержания высокого углеродного потен­циала подачу газа производят в течение всего активного периода.

При отсутствии в атмосфере паров воды и СО2 насыщение происходит за счет реакции

В этот период концентрация углерода на поверхности достигает величины, близкой к пределу его растворимости в аустените при данной температуре.

2. Диффузионный период (диффузия в вакууме). В этот период прекращают подачу газа в камеру и печь вакуумируют (рис. 76). В процессе выдержки при температуре насыщения происходит диф­фузия углерода вглубь, а концентрация его на поверхности дости­гает оптимальной (0,8—1,0 %).

После окончания цементации садка охлаждается ниже эвтектоидной температуры АГ1

обычно до 500—600 °С (рис. 76). Для ускоре­ния охлаждения в печь подают азот, аргон или гелий до давления, близкого к атмосферному. Далее следует повторный нагрев до температуры закалки (рис. 76); закалка осуществляется путем погружения поддона с деталями в масляную закалочную ванну (рис. 75). После закалки следует отпуск при 180 °С рис. 76).

На ВАЗе для получения эффективной тол­щины 1,2 — 1,4 мм (до 0,4 % С) и концентрации углерода на поверх­ности 0,9% применяют режим: τ1= 30 мин Сг=1.4% и τ2= 50 мин при Сг=0.9%.

Процесс В ТО и Ц имеет ряд преимуществ: отсутствие газоприготовительных установок; сокращение длительности про­цесса за счет активации поверхности и более высокой температуры; получение светлой поверхности деталей после цементации; отсутствие кислородсодержащих компонентов в атмосфере исключает внутреннее окисление и обезуглероживание деталей; улучшение условий труда; уменьшение удельного расхода электроэнергии и технологического газа; большая мобильность оборудования (пуск и остановка занимают несколько минут); более высокая культура производства; лучшее проникновение газа-карбюризатора в отвер­стия малого диаметра, что обеспечивает равномерную цементацию внутренних полостей. Недостатком ВЦ является высокая стоимость оборудования.

К числу недостатков вакуумной цементации низколегированных конструкционных сталей относится сильное пересыщение поверхностного слоя углеродом (до 2,5—3,0 %) и образование большого количества карбидов Ме3

(С) по границам зерен или в виде пластинчатых выделений. В процессе диффузионной выдержки карбидные выделения не претерпевают изменения и снижают предел выносливости, но повышают износостойкость. Процесс ВЦ находит все более широкое применение, особенно на предприятиях с серийным производством.

Светлая закалка и цементация в кипящем слое

ТО и ХТО в псевдоожиженном слое. Высокий коэффициент массо- и теплопередачи, а также турбу­лентность смеси обеспечивают быстрый и равномерный нагрев и насыщение изделий. Скорость нагрева достигает 250—400 °С/мин. Для насыщения используют графит, уголь и другие углеродсодержащие вещества, в качестве инертной среды для формиро­вания «кипящего» слоя — шамот, кварцевый песок, окись алю­миния и др. Применяют также подачу природного газа (10—25 %).

Технологическими параметрами наряду с температурой и дли­тельностью процесса являются также скорость газа-носителя (азота, эндогаза), размер частиц, вид карбюризатора и коэффициент расхода первичного воздуха.

Кипящий слой представляет собой гетерогенную систему, в которой за счет проходящего потока газа (или вибрации) через слой мелких (0,05—0,20 мм) частиц (чаще корунда) создается их интенсивное перемешивание, что внешне напоминает кипящую жидкость.

Частицы корунда располагаются на газораспределительной решетке печи. При определенной скорости прохождения восходящего потока газа (выше критической скорости) частицы становятся подвижными и слой приобретает свойства жидкости (псевдоожиженный слой).

Установка состоит из генератора для получения эндогаза и рабочей зоны, где производится цементация. Как видно из рис. 79, через трубку 9

в эндогенератор, наполненный катализатором (ГИАП-3), поступает природный газ (метан) в смеси с воздухом (а = 0,26-О,27). В генераторе на газораспределительной решетке насыпается слой карборунда для улучшения подвода тепла от стенок в глубь катализатора. Рабочая зона заполнена корундом (размер частиц 100—120 мкм). Цементация проводится в атмосфере кипящего слоя, получаемого добавлением к эндогазу метана. Метан подводится через трубку
3.
Узел смешивания эндогаза с метаном
4
располагается между генератором и цементационной зоной.

Читайте также:
Автомат ввода резерва своими руками

Достоинствами процесса ТО и цементации в кипящем слое яв­ляются сокращение длительности процесса вследствие большой скорости нагрева и высокого коэффициента массоотдачи углерода, возможность регулирования угле­родного потенциала атмосферы в рабочей зоне печи, уменьшение деформации и ко­робления обрабатываемых деталей за счет равномерного распределения температуры по всему объему печи

Процесс ТО и цементации в кипящем слое может быть использован на заводах мел­косерийного и единичного производства, для замены соляных ванн.

Цементация в тлеющем разряде (ионная цементация).

Наиболее важны следующие ее преимущества:

1. Простота управления насыщением с помощью изменения электрических параметров тлеющего разряда состава газовой среды.

2. Сокращение длительности процесса в 2—3 раза по сравне­ нию с обычной газовой цементацией за счет интенсификации реакций взаимодействия на насыщаемой поверхности. При по­ вышении температуры продолжительность процесса сокращается еще более, при этом не наблюдается внутреннее окисление, отсут­ ствуют выделения сажи на деталях и в камере печи.

3. Уменьшается расход углеродсодержащих газов в 10 и бо­ лее раз.

Термообработка нержавеющей стали – особенности сложного процесса!

Термообработка нержавеющей стали – это специальное тепловое воздействие на металлическую основу с целью последующего изменения определенных свойств или структуры металла.

1 Отжиг стали 1 рода – важный этап термообработки

Отжиг металла включает в себя нагревание до определенной температуры, затем выдержку и обработку при той же заданной температуре и постепенное охлаждение. Такая процедура необходима для получения максимально эластичных свойств металла, а также получения полноценной, равновесной структуры и снижения первоначальных прочностных характеристик. Таким образом, процедура бывает двух родов. В первом случае обработка металла не несет в себе каких-либо существенных структурных потерь, во втором отжиг направлен на создание определенных свойств, на всех этапах и видах отжига остановимся подробнее далее в статье.

Гомогенизация стали – способ температурной обработки, при котором уменьшается химическая неоднородность металлических свойств. Так как полностью избавиться от неоднородности химического состава металла невозможно, приходится уменьшать ее с помощью специального этапа отжига. В течении длительного периода металл держат при высокой температуре, это способствует максимально высокому движению атомов кристаллической решетки, за счет чего (обычно в диапазоне 48-62 часов) химическая неоднородность выравнивается до необходимых норм.

Рекристаллизация – еще один способ обработки металла, при котором происходит его нагрев до высоких температур (выше температуры начала кристаллизации), а затем медленное и продолжительное охлаждение. Продолжительность подобной процедуры зависит от типа металла, его размеров и изначальных свойств. Как правило, среднее время рекристаллизации равно 2-2,5 часам. В результате такого отжига увеличивается пластичность металла и уменьшается его прочность, кроме того, это необходимо для предотвращения наклепа или нагартовки, которые ведут к полному разрушению металлических свойств.

Снятие внутреннего напряжения металла – этот этап применяется для снятия напряжения, которое возникло в процессе других типов обработки. Чаще всего следствием необходимости такого процесса является неравномерный нагрев или охлаждение детали, шлифовка, порезка, сварка.

Таким образом, внутренние напряжения, которые создаются в различных частях сплава, могут в итоге влиять на прочность нержавеющей стали и приводить к деформации и нарушению допустимых пределов использования. Снятие напряжения проводят при температурах существенно ниже порога начала кристаллизации, что обеспечивает равномерное распределение внутренней разрядки в металле. При обычной температуре добиться нормализации напряжения можно лишь за очень долгий промежуток времени.

2 2 род – создание структурного равновесия в металле

В отличии от процесса первого рода, в данном случае удается добиться полного изменения структурных свойств металлического сплава. При этом специалисты в термообработке различают два вида отжига второго рода – полный и частичный. Закалка – вид термической обработки, при котором сплав получает неравновесную структуру и максимально прочные свойства. При закалке происходит равномерное нагревание до высоких температур, затем обработка стали при этих же температурах и резкое, почти мгновенное охлаждение металла. Закалка может также быть двух видов – с полиморфным превращением и без такового.

В первом случае металл при обработке нагревается до температуры, при которой происходит замена типа кристаллической решетки на нужную в одном из основных легирующих элементов сплава. Во втором обработке подвергается металлический сплав с органическим сочетанием легирующих элементов одного в другом. Иногда подобный процесс также называется старением, и необходим он для получения равновесия в структуре сплава и необходимого уровня свойств.

Отпуск металлического сплава – еще один вид термообработки, который направлен на уменьшение напряжения с полиморфным превращением. Этот процесс необходим для придания металлу оптимального сочетания свойств пластичности и прочности. Различают четыре этапа в процессе отпуска, которые направлены на создание естественного или искусственного старения металла. Эти факторы напрямую влияют на характеристики прочности и твердости.

Читайте также:
Авто моделирование своими руками

3 Химическая обработка и повышение коррозионной стойкости

Химическая обработка представляет собой одновременное воздействие на металл температуры среды и химических свойств с тем, чтобы влиять на поверхность детали. Как правило это либо повышение антикоррозионной защиты поверхности, либо создание специальных слоев, например, дополнительных износостойких или антифрикционных возможностей металла. При термомеханической процедуре происходит одновременная деформация и термическая обработка металла (например, ковка, закалка), что также влияет на конечные свойства металла, причем при термообработке можно добиться существенно лучших показателей, чем при обработке металла двумя способами по отдельности.

Чтобы повысить стойкость металлического сплава к коррозии межкристального типа, необходимо добавить дополнительные легирующие элементы в процессе термической обработки. Наиболее эффективными элементами в данном случае выступают Cr и Ni – свинец и никель соответственно. В процессе обработки антикоррозийная защита стали включает в себя такие виды работ, как:

  • снижение содержание кристаллов азота и углерода в составе;
  • введение дополнительных элементов (титан, свинец);
  • отжиг металла;
  • уменьшение времени охлаждения при термической обработке.

Самые распространенные и массово применяемые виды стали – хромистые. В них нет полиморфных превращений, что упрощает процесс их обработки. Поэтому чаще всего обработка таких сталей сводится либо к смягчению (отжиг) либо к упрочнению материала (закалка). Температура при этом выбирается в зависимости от желания производителя получить те или иные свойства в доминирующем виде. Температура в первом случае не должна превышать 900 градусов, а закалка и отпуск проводятся в печи при оптимальных температурах нагрева до 650 градусов.

Таким образом, термообработка стали является самым распространенным способом улучшения свойств сплава и придания ему необходимой формы и содержания. Изделия после термообработки применяются в различных областях строительства и промышленности. Кроме того, с ее помощью можно добиться увеличения срока службы стальной конструкции (антикоррозийное покрытие, механическая обработка). В зависимости от типа обработки и состава сплава различают и различные маркировки стали, по которым можно определить способ, которым она была обработана.

Отжиг, закалка и термическая обработка нержавеющей стали

Вас интересует термическая обработка, отжиг, закалка нержавеющей стали. Поставщик Авек Глобал предлагает купить нержавеющую сталь отечественного и зарубежного производства по доступной цене в широком ассортименте. Обеспечим доставку продукции в любую точку континента. Цена оптимальная.

Актуальность

Нержавеющая сталь обычно подвергаются термической обработке для снятия напряжений, упрочнения или с целью повышения пластичности. Термическая обработка осуществляется в контролируемых условиях, чтобы избежать науглероживания и обезуглероживания.

Отжиг

Отжиг используют для перекристаллизации структуры аустенитных нержавеющих сталей и стимуляции образования карбидов хрома, Кроме того, эта обработка устраняет напряжения, возникающие во время предшествующей обработки, и гомогенизирует сварные швы. Температура кратковременного отжига нержавеющих сталей выше 1040 °C, чтобы исключить рост зерна в структуре. Контролируемая температура отжига некоторых сплавов может быть более низкая, учитывая размер зерна.

Стабилизирующий отжиг

Его обычно проводят после обычного отжига. Стабилизация заключается в осаждении углерода в форме карбидов (чаще — ниобия и титана) в температурном диапазоне от 870 до 900°C) в течение 2−4 часов с последующим быстрым охлаждением. Все ферритные и мартенситные нержавеющие стали могут быть отожжены в диапазоне температур образования феррита, или при нагревании выше критической температуры в диапазоне аустенита.

Субкритический отжиг

Температура субкритического отжига от 760 до 830 °C. Мягкую структуру сфероидизированных и ферритовых карбидов можно получить путем охлаждения материала (до t° 25°С) в течение часа, или выдержкой материала в течение часа при температуре докритического отжига. Отожжённые детали, прошедшие холодную обработку, можно отжигать на докритических температурах.

Рекристаллизационный отжиг

Сорта ферритной стали во всем диапазоне рабочих температур требуют короткого рекристаллизационного отжига (температура от 760 до 955°C). Поставщик Авек Глобал предлагает купить нержавеющую сталь отечественного и зарубежного производства по доступной цене в широком ассортименте. Обеспечим доставку продукции в любую точку континента. Цена оптимальная.

Читайте также:
Виды наждачной бумаги для дерева
Термообработка в контролируемой атмосфере

Контролируемые условия отжига позволяют уменьшить искажение формы. Эту обработку можно проводить в соляной ванне, но в основном предпочтителен отжиг, выполняемый в восстановительной среде,

Закалка

Как и низколегированные стали, мартенситные нержавеющие марки закаляют с одновременной аустенизацией. Температура аустенизации составляет от 980 до 1010 ° C. При температуре аустенизации 980 ° С, твердость вначале увеличивается, а затем падает. Процесс производится также с целью устранения возможного коррозионного растрескивания стали.

Отпуск

Мартенситные нержавеющие стали имеют высокое содержание сплавов и, следовательно, высокую прокаливаемость. Полная твердость может быть достигнута за счет воздушного охлаждения при температуре аустенизации, но для упрочнения больших участков может потребоваться закалка в масло. Закаленные компоненты должны быть отпущены сразу же после охлаждения на воздухе. В некоторых случаях компоненты перед обработкой охлаждают при -75°C. Закалка мартенситных сталей проводится при температурах выше 510 °C, а затем выполняется быстрое охлаждение сталей при температурах ниже 400 °C, чтобы избежать охрупчивания.

Купить. Поставщик, цена

Вас интересует термическая обработка, закалка нержавеющей стали. Поставщик Авек Глобал предлагает купить нержавеющую сталь отечественного и зарубежного производства по доступной цене в широком ассортименте. Обеспечим доставку продукции в любую точку континента. Цена оптимальная. Приглашаем к партнёрскому сотрудничеству.

ВАКУУМНАЯ ТЕРМООБРАБОТКА

Понятие вакуумной термообработки включает в себя серию технологических операций в вакуумной печи, служащих для изменения структуры внутреннего или внешнего контура детали, а также получения необходимых качеств поверхности.

Вакуумная среда позволяет минимизировать риск окисления детали. При вакуумной термообработке может изменяться температура (к примеру, ступенчатое охлаждение или нагревание), изменение давления, период выдержки всех стадий напуск определенных газов.

Одни из наиболее частых процессов, используемых в вакуумировании, являются закалка, отжиг, старение, отпуск, цементация и азотирование. Данные процессы проходят в специализированных вакуумных печах, а температура их протекания не превышает 1000С. Нагрев в вакуумных печах производится индуктивным путем, либо за счёт термосопротивления нагревательных элементов.

Сейчас вакуумирование является альтернативным методом обработки и составляет достойную конкуренцию таким традиционным технологиям как термическая обработка в инертных газах, закалка в соляных ваннах и масле. Однако, после применения процессов обработки металлов без использования вакуума, велика вероятность появления окислов и иных нежелательных образований на поверхности деталей. Поэтому при изготовлении высокоточных деталей, например, для космического машиностроения, вакуумная термическая обработка изделий превосходит все аналоги.

Вакуумную термообработку можно назвать одним из лучших методов обработки в ведущих отраслях промышленности за счет того, что технология позволяет существенно снизить искажение геометрии отливки (коробление) и изменение размеров, достижение необходимой твердости, отсутствие поверхностных зон окисления и обезуглероживания, однородность свойств по всему сечению и т.д. Кроме того, вакуумирование позволяет добиться получения блестящей и чистой детали, продляет ее срок службы и повышает износостойкость. Также, после вакуумной термообработки не требуется проводить доводочные операции.

В вакуумном отжиге, как одном из видов термической обработки, сочетаются нагрев до определенной температуры, выдержка и охлаждение. При вакуумном отжиге происходит обезгаживание деталей, при этом улучшаются характеристики изделия. Как правило, обжиг применяется в том случае, если требуется получить технологическую пластичность изделия перед выполнением дальнейших процессов, например, таких, как формовка или машинная обработка. Параметры зависят от материала и желаемой структуры.



Одна из разновидностей термической обработки – закалка, при которой материал нагревается до экстремально высоких температур, с последующим резким охлаждением в масляной или водной среде. Обычно процесс закалки в вакуумной печи проходит в две стадии. Во время первой производится нагрев под вакуумом, в процессе второй стадии осуществляется подача холодного газа (водород, азот, гелий) до определенного давления.

Цементация

Во время цементации посредствам подачи в печь углеродосодержащего газа, например, бутана, пропана и т.д., внедряется углерод, тем самым насыщая поверхностные слои изделия, что приводит к образованию углеродной пленки на поверхности детали. В результате такой обработки повышается устойчивость изделия к трению и напряжению в течение всего срока службы.

Оптимальным методом термической обработки для деталей пресс-форм, является вакуумная закалка сталей. Это одна из ведущих технологий термообработки в инструментальной промышленности. После всякого процесса термообработки появление окислов на поверхности детали неизбежно. Последующая механическая очистка изделия связана с большой трудоемкостью и высокой стоимостью обработки. Решить эту проблему можно, прибегнув к методу термической обработки в бескислородной среде.

Читайте также:
Верстак для столярных работ своими руками

На начальном этапе развития технологии вакуумирования были доступны для применения только обработки специализированных материалов в аэрокосмической и авиационной промышленности. На сегодняшний день сферы применения этих технологий значительно расширена и активно используется при производстве пресс-форм для изделий из пластмасс и быстрорежущих сталей, для штампов холодного и горячего деформирования.

Вакуумная печь является герметичной камерой, оборудованная системой нагрева и теплоизоляции и работающая под давлением. Предназначенные для термической обработки детали загружаются в вакуумную печь и нагреваются в вакууме или конвективно. Во время конвективного нагрева в камеру под давлением 2 бар подается промышленный газ. За счет смешивания газа во время нагрева обеспечивается температурная равномерность в изделии, это снижает появление короблений.

Закаленные детали охлаждаются газом. В зависимости от характеристик изделия, например, формы, материала или от требуемых результатов термической обработки, можно задать необходимое давление и тип используемого газа. Например, многие изделия из инструментальных сталей для штампов холодного и горячего деформирования, а также быстрорежущих сталей могут закаливаться в азоте при давлении до 10 бар.

Технология вакуумной термической обработки

До сих пор, на многих машиностроительных предприятиях, применяется классическая технология улучшения стальных изделий. Она представляет собой нагрев под закалку в окислительной или защитной атмосфере, охлаждение деталей в воде, масле или полимере и последующий отпуск в печах с окислительной атмосферой. На выходе получаются изделия с короблением поверхности до 0,2 мм. и чёрной пленкой, которая является результатом образования оксидов на металле. У таких деталей одна дорога – в цех механической доводки геометрии поверхностей. Избежать образования окислов на поверхности можно, используя защитные атмосферы эндо- и экзогаза, азота и др. Но коробление всегда будет являться обязательным атрибутом нагрева и закалки сталей.

Современные технологии позволяют значительно уменьшить изменения геометрических размеров поверхностей, используя более плавный нагрев деталей и используя в качестве закалочных сред более мягкие охладители. Это достигается при вакуумном нагреве с охлаждением в потоке газа.

Снижение давления до уровня ≤ 5 x 10 −5 атм., приводит к тому, что количество оставшегося кислорода в рабочем пространстве печи снижается и нагрев в такой атмосфере происходит без образования окислов на поверхности деталей. Более высокой чистоты термообработки можно достичь при подготовке поверхности деталей – предварительном обжиге, для максимального удаления влаги с поверхности, если такая имеется. Для этого детали пропускают через печь предварительного окисления с температурой около 600 о С, когда еще обезуглероживание не начинается. Как правило, такая печь предусмотрена в линии вакуумной термообработки. Она имеет еще одно назначение – обезуглероживание поверхности перед цементацией. По утверждению зарубежных коллег, предварительное обезуглероживание поверхности стали увеличивает скорость цементации на несколько десятков процентов.

В вакууме теплообмен осуществляется за счет излучения, так называемый радиационный нагрев. Но он происходит эффективно лишь тогда, когда излучение становится видимым, т.е. при температурах, превышающих 600 о С. При более низких температурах для ускорения нагрева используют специальный газ-заполнитель рабочего пространства печи, например азот. При использовании такого газа, время нагрева сокращается на треть.

Использование газовой атмосферы в низкотемпературном интервале нагрева (конвективный нагрев) повышает однородность прогрева изделий, соответственно позволяет снизить уровень термических напряжений, вызывающих коробление. Кроме сокращения времени нагрева и снижения коробления, преимуществом использования конвективного нагрева является возможность применение более плотной загрузки, т.е. повышение производительности.

Также газ-заполнитель может использоваться в качестве закалочной среды и среды для отпуска, т.е. все операции закалки (нагрев под закалку и закалка) могут производиться на одном и том же технологическом оборудовании – вакуумной печи.

Закалочные среды, используемые при вакуумной термообработке

В случае закалки, интенсивность охлаждения должна обеспечить требуемый уровень упрочнения с учётом легирования стали, размеров обрабатываемых изделий и их массой в загрузке. При этом коробления изделий должны быть минимальны.

Интенсивность охлаждения принято оценивать коэффициентом теплоотдачи α, имеющим размерность Вт/м 2 К (количество тепла, теряемых единицей площади поверхности, при снижении её температуры на один о К).

Коэффициенты теплоотдачи для разных закаливающих сред:

– Циркулирующий газ – 100-150 Вт/м 2 К

– Сжатый газ – до 1000 Вт/м 2 К

– Спокойное масло (80 о С) – 1000-1500 Вт/м 2 К

– Циркулирующее масло (80 о С) – 1800-2200 Вт/м 2 К

Читайте также:
Антиржавчина для металла автомобильная

Возрастание коэффициента теплоотдачи, при использовании газа, может быть достигнуто за счёт увеличения давления охлаждающей среды. Конечно нужно понимать, что не все стали можно закалить газом. Вакуумное оборудование позволяет производить закалку как в потоке газа, так и в масле. При выборе охлаждающей среды следует учитывать взаимное расположение с-кривой стали и скорости охлаждения среды. Из-за того, что производители вакуумного термического оборудования не работают с водяными закалочными баками, все низкоуглеродистые стали, к сожалению, остаются “за бортом” высоких технологий вакуумной закалки. Конечно их можно упрочнить частичной закалкой в масле, но присутствие перлитных составляющих в структуре мартенсита не вызывает доверия к долговечной работе этих деталей.

Наиболее дешевой охлаждающей средой для вакуумной закалки является азот. Для проведения качественных процессов нагрева и закалки необходимо использовать азот повышенной чистоты. При циркуляции в рабочем пространстве со скоростью 60-80 м/с коэффициент теплоотдачи будет составлять примерно 350-450 Вт/м 2 K. Более высокий коэффициент теплоотдачи имеет гелий, но он имеет более высокую стоимость. Все применяемые при вакуумной закалке среды, можно расположить по мере возрастания охлаждающей способности следующим образом:

азот (1 атм) – азот (10 атм) – гелий (10 атм) – гелий (20 атм) – масло

Охлаждающая способность сжатых гелия и азота приближается к охлаждающей способности масла. Недостатком гелия является его высокая стоимость. Данная проблема решается использованием рациональных схем введения гелия в печь, в том числе предусматривающих многократное использование одних и тех же порций газа.

Подведем итог. Преимущества вакуумной термообработки на лицо: отсутствие окисления и обезуглероживания, снижение степени коробления деталей (даже при закалке в масле), высокая гибкость оборудования, увеличение производительности процесса, высокая экологичность и безопасность процессов, повышение культуры термических производств.

7 методов и технология отжига стали

Металлургия производит огромное количество марок стали. Для выполнения разных задач часто требуются специфические характеристики металла, которые обеспечить заводы не в состоянии. Тогда на обрабатывающих предприятиях производится доработка сырья до нужной кондиции. Отжиг стали — одна из наиболее частых операций по приданию нужных качеств.

История и технология отжига стали

Отжиг стали предполагает применение переменных температур: нагревание до высоких значений без потери формы и охлаждение в заданном температурном режиме приводит к структурным изменениям кристаллической решетки, сплав получает новые качества, нужные для решения конкретных задач.

Отжиг стали улучшает технологические характеристики металлов. Принято различать 2 разновидности отжига — 1 и 2-го рода.

При первом воздействие выполняется наклепом, который понижает внутренние напряжения рекристаллизацией. Этим устраняются последствия обработки давлением, снижение прочностных характеристик и увеличение пластичности. Изделия приобретают повышенную надежность и долговечность.

Второй род воздействия включает прогревание проката до уровня, превышающего критические точки, в особых режимах охлаждения по сроку и температуре. Итогом становится качественное изменение структурных решеток и получение заданных характеристик материала. Проведение отжига сопряжено с риском пережога. Возникновение необратимых негативных изменений структуры приводит к переплавке проката и изделий.

Точки Чернова

Расчет температурных режимов выполняют, используя открытые в 1868 г. русским ученым Д.К. Черновым критические точки, зависящие от значения температур и %-ого содержание углерода, в которых изменяются фазовые состояния и структурное строение металлов. Открытие Чернова — фундамент создания науки о металлах: впервые установлена связь между режимом обработки, структурным видом и характеристиками сплавов. Применение критических точек дает возможность построения различных режимов термообработки металла. Точки Чернова обозначают литерой А с добавлением индекса, указывающего соответствие точки воздействию:

  • «c» — нагреву, от французского chauffage – нагревание;
  • «r» — охлаждению, refroidissement – на французском языке.

Диаграмма, построенная на точках Чернова:

Сечение «I» на диаграмме соответствует доэвтектоидной стали. Пересечение линии диаграммы, по горизонтали температуры и вертикали, соответствующей %-му содержанию углерода в сплаве, определяет искомые критические значения.

В процессе нагревания сечение «I»проходит следующие критические точки:

  • При температуре 210°С пересекает пунктир, проходящий по линии QP — точка Ас 0, которая отмечает потерю цементитом магнитных свойств.
  • t=727°С на линии PG находится точка Ас 1 превращения перлита в аустенит.
  • t=768°С на линию PG приходится точка Ас 2 потери магнитных свойств — магнитного железо переходит в немагнитное.
  • Последующее повышение t° до пересечения с линией GS показывает переход стального сплава в однофазное аустенитное состояние (перекристаллизация заканчивается. Температура этой точки зависит от состава конкретного металла.

Охлаждение не меняет номеров точек, не вызывает обратной перестройки материала.

Читайте также:
Гофротруба из нержавейки для дымохода

Линия «II» выстроена для эвтектоидных сталей.

В промышленности для термообработки проката и изделий используют в печи конструкций:

  • камерные — для заготовок небольшого объема;
  • шахтные — работают на газе и электроэнергии, выполняют различные технологические задания;
  • печи с выдвигающимся полом — обработка крупногабаритного проката и узлов;
  • вакуумные — для быстротекущих сплавов, тугоплавкого металла, титана, меди.

Что даёт отжиг металлов

Отжиг выполняется для придания стали нужных качеств:

  • снятия внутренних напряжений, полученных первичной обработкой металла — проявляется структурный дисбаланс, который можно снять определенным способом термообработки, получив необходимые характеристики сплава для решения конкретных задач;
  • увеличения прочностных и механических характеристик — изделия после отжига долговечнее и прочнее;
  • изменения внутренней структуры — под действием высокой температуры изменяется молекулярная структура металла, становится однородной (гомогенной), что упрощает проведение последующих обработок;
  • улучшения пластичности, уровня сопротивления, вязкости при ударах — улучшение качественных характеристик после отжига снижает затраты на конечную доводку металлоизделий до требуемых параметров.

Способ и режим термообработки назначается по составу сплава.

Виды отжига

Рассмотрим, что означает термин «отжиг металлов». Термическая обработка металла, состоящая из нагрева выше температуры критических точек Чернова и охлаждение на профессиональном языке называется отжигом. Процедура применяется к различным металлам и их сплавам.

На промпредприятиях применяют режимы термообработки:

  • полный, неполный;
  • рекристаллизационный;
  • диффузионный;
  • изотермический;
  • сфероизодизационный;
  • нормализационный.

Полный отжиг стали

Полный обжиг проводится на изделиях из доэвтектоидных сплавов или сталей, содержащих карбон в количестве ≤ 0,8%. Цель проведения операции — измельчение зерна и улучшение качества обработки с применением режущего инструмента, снятие внутренних напряжений материала. Нагрев происходит на 30..50°С выше точки Ас3, затем деталь постепенно остужают, не вынимая из печи. Охлаждаясь, аустенит выделяет мелкозернистые, гомогенные (однородной структуры) ферриты и перлиты (франц. — жемчуг). Температура нагревания выбирается по типу стали и диаграмме состояний, данные зафиксированы в справочных материалах. Продолжительность охлаждения назначают по составу и структуре металла:

  • углеродистые сплавы — 180…200°С/час;
  • низколегированные — 90°С/час;
  • высоко легированные — 50°С/час.

После проведения процедуры полного отжига неоднородная структура углеродистых или доэвтектоидных сплавов становится однородной, что дает податливость дальнейшей обработке.

Неполный

В отличие от полного, кардинально меняющего структурный состав металла, неполный отжиг изменяет только перлитовую, не затрагивая ферритовую структуру. Перлит , входящий в состав структур сталей, чугуна, других железоуглеродистых материалов, представляет собой цементит и феррит в эвтектоидной смеси. Основная задача неполного отжига — сделать сплавы максимально мягкими и податливыми.

Нагревание производится до t°, превосходящих на 30…50°С точку А1 (параметр перехода перлита в аустенит — начала перекристаллизации), но не достигающих Ас 3 — около 770°С. Затем производится охлаждение до 600°С в установке, со скоростью 60 град/ час, затем процесс продолжается на открытом пространстве.

Рекристаллизационный

Рекристаллизация — снятие структурных изменений, полученных в ходе механических деформаций, вызывающих наклеп. Наклепанный металл имеет меньшую пластичность, отличается жесткостью и неподатливостью.

Нагревание до 650…680°С приводит к равномерному распределению зерен феррита и перлита, вытянутых в направлении деформации, возвращает металлу пластичность.

Диффузионный процесс

Цель диффузионного способа — придание на уровне атомного строения однородности структуре сплава. Диффузионный отжиг иначе называется дендритной ликвацией. Придание гомогенности данным методом уничтожает дендритную ликвацию равномерным распределением атомов примесей по химической структуре слитка.

Процесс отличается использованием t≥1000°С, увеличением выдержки в нагретом состоянии свыше 12 часов, медленным остужением, поэтому он имеет высокую стоимость.

Метод изотермии

Изотермический отжиг используют на сплавах с большим содержанием легирующих и хромистых добавок. Особенностью процесса является нагрев металла на 30…50°С выше точки АС3, быстром остужение и выдерживание при t° ниже критической точки А 1, с дальнейшим естественным охлаждением в воздушной среде.

Преимущество метода изотермии — получение более гомогенного структурного строения деталей, уменьшение срока обработки, так как процесс охлаждения в печи занимает больше времени, чем в естественной среде.

Сфероидизация

При нагревании заэвтектоидных и легированных сплавов до превышения параметра АС 1 на 30…50°С происходит перекристаллизация строения, способствующая образованию перлита в форме правильных сфер. Для ускорения сфероидизации возможно проведение маятникового отжига.

Нормализационный способ

Нормализация производится как промежуточный процесс перед закаливанием и другими видами воздействий для устранения наклепа и удаления внутренних напряжений. Доэвтектоидная сталь нагревается выше точки АС3 на 30…50°С, и постепенно охлаждается в естественной среде. Отличие метода в переохлаждении, из-за которого получают гомогенное мелкозернистое тонкое строение решетки металла.

Читайте также:
Вихревая труба ранке своими руками

Преимущество нормализационного способа заключено в снижении срока обработки при высокой производительности. В результате углеродистые сплавы рекомендуют не отжигать, а нормализовать.

Особенности отжига различных сплавов

При назначении способа и режима термообработки важен процент содержания в нем углерода и других примесей. Для точности соблюдения режима рекомендуют использовать две печи: в 1-ой изделие проходит нагрев при t=max , во 2-ой — проходит выдержку, обеспечивающую завершение структурных преобразований металла.
Обработка нержавеющей стали в первой печи происходит с t=1000°С, затем выдержка несколько часов во 2-ой при t=900, завершает охлаждение до t=300° на скорости 50…100 град/ час, окончательное охлаждение производят на открытом пространстве.

Отжиг в домашних условиях

В быту для снижения прочности и упрощения последующей обработки металла возможно выполнить процедуру отжига упрощенным сспособом неполного отжига.
Использование газовой горелки для нагревания не дает возможности проконтролировать температурный режим, поэтому температуру определяют «на глазок», в затененном месте. Изделие последовательно приобретает цвет разжаривания в зависимости от температуры (в градусах):

  • темно-коричневый — t=530…580;
  • коричнево-красный — t=580…650;
  • темно-красный — t=650…730;
  • темно-вишневый -t= 730…770;
  • вишнево-красный — t=770…800;
  • светло-вишневый — t=800…830;
  • светло-красный — t=830…900;
  • оранжевый — t=900…1050;
  • темно-желтый -t= 1050…1150;
  • светло-желтый — t=1150…1250;
  • светло-белый — t=1250…1350.

Изделия следует нагревать на нагретых металлических подставках. Для охлаждения используют различные среды — воду комнатной температуры или нагретую до 50°С, водные растворы, масла, воздух. Ускоряет охлаждение добавка кухонной соли, едкого натра, селитры. Замедляет процесс добавка жидкого мыла, масляной эмульсии, жидкого калиевого или натриевого стекла, известкового молочка.

Охлаждение с высокой скоростью дает твердый закал, приводящий к высоким внутренним напряжениям, возможны трещины, а медленное охлаждение не даст твердости закала. Для получения деталей одинаковой степени закалки следует использовать ванну большой емкости или заменять среду закаливания после каждой операции.

Следует помнить, что режимы высоких температур потенциально пожароопасны, их проводят с соблюдением правил пожарной безопасности в подготовленных помещениях с огнезащитой поверхностей и качественной приточно-вытяжной вентиляцией. При проведении отжига обязательно использовать средства защиты — спецодежду и обувь, рукавицы, головной убор с защитным козырьком.

Суть технологии отжига стали, виды и назначение

Суть отжига стали: физика процесса, виды и области применения. Различия отжига первого и второго рода. Описание рекристализационного, диффузионного, гомогенизационного отжига. Особенности отжига меди, латуни с сплавов. Применяемое оборудование.

Отжиг стали — это один из видов термообработки, применяемый в качестве подготовительной или заключительной операции при закалке, сварке, обработке резанием или давлением.

Основное назначение отжига заключается в изменении структуры стали для снижения ее твердости и придания ей пластичности и ударной вязкости, а также устранения внутренних напряжений. Для этого стальные изделия нагревают выше критической температуры, а затем подвергают медленному охлаждению.

После такой обработки изменяется структура металла, его зернистость и равномерность кристаллической решетки. Температура нагрева при отжиге выбирается в зависимости от целей конкретной операции, а также процентного содержания в стали углерода и легирующих добавок.

Для определения временных параметров нагрева и остывания, которые во многом зависят от массы и формы изделия, используют расчетные методы и данные из технологических справочников.

Что такое отжиг металла

Отжиг металла применяется для получения равновесной и однородной структуры при подготовке изделия к последующей термической или механической обработке, а также для улучшения его физических характеристик после операций резания, сварки, штамповки, прокатки или закалки.

Цель отжига — устранить внутренние неоднородности стали, улучшить ее зернистость и равномерность кристаллической решетки, а также снять остаточное напряжение, вызываемое деформацией изделия при различных видах обработки. Особенности этой технологии позволяют:

  • привести свойства стали к требованиям последующей термообработки;
  • улучшить характеристики материала заготовки перед обработкой резанием или давлением;
  • предотвратить деформацию и устранить внутренние напряжения сварных и литых изделий;
  • восстановить исходное качество стали после неудачной закалки.

Одной из характерных особенностей такой термообработки является то, что остывание нагретого металла происходит естественным образом, без применения охлаждающих сред. А температура нагрева при отжиге зависит от состава стали и требуемого результата.

Процессы в металле при отжиге

Отжиг металла выполняется для возвращения его микроструктуры в исходное состояние, которое, как правило, характеризуется мягкостью, пластичностью и отсутствием напряжений.

При отжиге углеродистых сталей изделие сначала разогревают до температуры, несколько превышающей точку аустенита, а затем естественным способом остужают до комнатной температуры. В результате получается сталь, состоящая из сочетания перлита с ферритом с упорядоченной кристаллической структурой.

Читайте также:
Волновой редуктор своими руками

В зависимости от состава металла и целей обработки отжиг стали может быть без фазовых преобразований (1-го рода) или с их использованием (2-го рода). Первый способ чаще всего применяют после механообработки для устранения нагартовки, а второй — перед закалкой для получения исходной структуры материала.

Отжиг первого рода

Как правило, первый вид применяется после литья, горячей и холодной обработки давлением, а также различных видов обработок резанием. Он имеет несколько вариантов технологии отжига, которые используют в зависимости от того, какие неравновесные состояния структуры стали предполагается устранить, в том числе:

  • рекристаллизационный;
  • гомогенизационный (диффузионный);
  • для снижения напряжений;
  • высокий.

При применении этого вида термообработки все процессы реструктуризации стали протекают самопроизвольно, вне зависимости от изменений в фазовых составляющих, а нагрев лишь ускоряет их.

Гомогенизационный отжиг

Этот вид термообработки также называют диффузионным отжигом, т. к. выравнивание распределения химических элементов по объему изделия происходит с помощью диффузии.

При литье легированных сталей в их структуре формируются древовидные (дендритные) неоднородности, при этом легирующие элементы (хром, молибден, ванадий) концентрируются в средней части таких образований. После нагрева их атомы становятся более подвижными и диффундируют в области с меньшей концентрацией.

При гомогенизирующем отжиге сталь разогревают до температур, близких к плавлению (до 1200 ºC), а затем медленно остужают в печи в течение десятков часов. В результате большой длительности процесса металл становится крупнозернистым. Это недостаток исправляют последующей термообработкой, отжигая деталь на мелкое зерно.

Рекристаллизационный отжиг

При обработке стальных деталей давлением происходит деформационное упрочнение металла, которое называется нагартовкой или наклепом. Для снижения жесткости и повышения пластичности применяют рекристаллизационный отжиг, позволяющий восстановить деформации и искажения в кристаллической решетке стали.

Для этого деталь нагревают до температуры, превышающей на 150÷200 ºC порог рекристаллизации (для углеродистой стали это составляет около 700 ºC), выдерживают под нагревом, а затем остужают.

При операциях холодной штамповки этот вид термообработки может применяться как в качестве предварительного или межоперационного, для снижения жесткости заготовки, так и в качестве окончательного, для придания готовому изделию требуемой пластичности.

Отжиг, уменьшающий напряжение

Такие напряжения часто имеют достаточно большую величину и в совокупности с эксплуатационными могут оказаться выше порога прочности изделия. Для их уменьшения стальные детали отжигают по специальной методике в температурном диапазоне, находящемся ниже точки рекристаллизации.

Температуру нагрева и выдержки выбирают в зависимости от марки металла и целей отжига. Для углеродистых сталей она находится в интервале от 150 до 700 ºC. Время термообработки зависит от массы и габаритов изделия и может составлять несколько часов.

Высокий отжиг

Этот вид термообработки используют главным образом для изделий из высоколегированных сталей с малым содержанием углерода. Для этого деталь нагревают до 650÷700 ºC, выдерживают при этой температуре около часа, а затем медленно охлаждают либо в остывающей печи, либо полностью засыпав просушенным песком в специальном ящике.

Таким способом отжигают зубчатые колеса после механической обработки.

Отжиг второго рода

  • полный;
  • неполный;
  • изотермический;
  • нормализационный;
  • маятниковый;
  • патентирование.

Все они характеризуются нагревом выше критической точки, а различаются временем выдержки и охлаждения, а также применимостью к конкретным маркам стали.

Полный и неполный отжиг

Температура нагрева при этом методе не должна превышать критическую точку Ас3 более чем на 50 ºC, а охлаждение проводится постепенно, вместе с остыванием печи. Этот метод применим только к сталям с содержанием углерода до 0.8 %, т. к. при большем значении этого параметра резко возрастает зернистость.

Для получения таких же результатов при термообработке высокоуглеродистых сталей (с содержанием углерода более 0.8 %) используют неполный отжиг, при котором изделие нагревают на 30÷50 ºС выше температуры Ас1, а затем также медленно охлаждают.

Оба метода основаны на фазовом переходе от аустенита к перлиту, а их результатом является уменьшение размера зерна и улучшение соответствующих физических характеристик металла.

Изотермический отжиг

Изотермический отжиг проводят путем нагрева изделия выше точки Ас3 с последующим его переносом в печь или ванну с расплавом солей, разогретую до температуры 620÷700 ºC.

В этом месте оно выдерживается определенное время до полного распада аустенита, а затем остужается на воздухе. Длительность выдержки определяется габаритами детали и маркой стали: для низкоуглеродистой стали это могут быть минуты, а для легированной — часы.

Читайте также:
Велоснегоход своими руками

Данный вид термообработки предназначен для сталей с содержанием углерода менее 0.8 % и чаще всего используется для улучшения структурных свойств легированных сталей.

Нормализационный отжиг

Нормализацию сталей с содержанием углерода менее 0.3 % можно проводить вместо отжига второго рода. При большем содержании углерода у нее возрастает твердость и прочность, что не всегда приемлемо для механообработки.

В результате нормализации низкоуглеродистых сталей у них формируется более тонкая структура, поэтому этот вид термообработки иногда носит название стабилизирующий отжиг.

Маятниковый отжиг

Эта процедура называется маятниковым (или циклическим) отжигом и при повторении нагрева/охлаждения не менее трех раз позволяет получить перлит со стопроцентной зернистостью.

Патентирование

Патентирование является одним из узкоспециализированных видов изотермической термообработки, предназначенным для подготовки стальной проволоки к многократному обжатию в процессе холодного волочения.

Для этого ее вначале нагревают до 900 ºC, а затем некоторое время выдерживают в расплаве солей или свинца при температуре 500÷600 ºC. После этого она охлаждается на воздухе и приобретает сорбитовую структуру с включениями троостита, обладающую высокой прочностью на разрыв и необходимой для обжатия пластичностью.

Особенности отжига различных металлов и сплавов

У остальных изменение внутренней структуры при термообработке происходит за счет рекристаллизации и диффузионных процессов. Температура, при которой происходит внутренняя рекристаллизация алюминия, находится в интервале от 120 до 300 ºC, поэтому его отжигают с нагревом не выше 320 ºC.

Его сплавы (группы АД, АК, Д, АВ) отжигаются при более высоких температурах (370÷430 ºC) с последующим остужением на воздухе от получаса до нескольких часов.

Отжиг меди производят с нагревом до красного свечения (600÷700 ºC). Скорость охлаждения не влияет на качество отожженного металла, поэтому изделия из меди можно охлаждать в воде. При отжиге латунь и большинство бронз также нагревают до 700 ºC, а медно-никелевые сплавы — до 850 ºC, но охлаждать их можно только на воздухе.

Изделия из чистого титана отжигают с нагревом до температуры 600÷700 ºC, а из его сплавов — до 650÷750 ºC. Выдержка при нагреве составляет несколько десятков минут с последующим остужением на воздухе. Отжиг чугуна, также являющимся сплавом железа и углерода, происходит на основании тех же физических законов и технологий, что и у стали.

Используемое оборудование сегодня

Отдельные виды этого оборудования могут работать с защитными средами из вакуума или химически нейтральных газов. Для выполнения изотермических операций применяют печи или ванны с расплавленными металлами и солями.

Транспортировка изделий производится специальными тележками с рельсовыми направляющими, при этом остужение изделий на воздухе обычно осуществляется прямо на этих транспортных средствах. Для погрузки и разгрузки деталей используются мостовые и консольные краны и кран-балки.

Возможные дефекты при отжиге стали

Все основные дефекты при отжиге стали связаны с нарушением температурных режимов и воздействием на металл активных газовых сред.

При слишком высокой температуре нагрева сначала происходит чрезмерное укрупнение зерен, а при значениях, близких к температуре плавления, начинается проникновение кислорода внутрь металла и окисление границ его структурных элементов.

Первый дефект, называемый перегревом, можно исправить повторной термообработкой, а второй (он называется пережогом) приводит к необратимым изменениям. Самым активным газом, вызывающим изменение химического состава поверхности стали, является кислород.

При воздействии открытого пламени на поверхности стали появляется упрочненный слой из смеси оксидов железа, именуемый окалиной. С нею связано не только уменьшение объема стали в заготовке, но и возможное возникновение проблем с механической обработкой после отжига.

Удаление окалины вызывает повышение трудозатрат и дополнительный расход материалов на травление или дробеструйную обработку. Еще одним результатом воздействия кислорода является обезуглероживание, которое приводит к деградации поверхностного слоя стали и может образовать микротрещины и поверхностную деформацию.

В Интернете встречаются утверждения, что отдельные виды латуни можно отжигать с охлаждением в воде, но при этом марки такой латуни не указываются. Если вы что-нибудь знаете об этом, поделитесь, пожалуйста, информацией в комментариях.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
gmnu-nazarovo.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: