Бесконтактный пускатель своими руками

Бесконтактные тиристорные контакторы и пускатели

Коммутация тока в цепи электромагнитными пускателями, контакторами, реле, аппаратами ручного управления (рубильниками, пакетными выключателями, переключателями, кнопками и т. д.) осуществляется изменением в широких пределах электрического сопротивления коммутирующего органа. В контактных аппаратах таким органом является межконтактный промежуток. Его сопротивление при замкнутых контактах очень мало, при разомкнутых может быть очень высоким. В режиме коммутации цепи происходит очень быстрое скачкообразное изменение сопротивления меж контактного промежутка от минимальных до максимальных предельных значений (отключение), или наоборот (включение).

Бесконтактными электрическими аппаратами называют устройства, предназначенные для включения и отключения (коммутации) электрических цепей без физического разрыва самой цепи. Основой для построения бесконтактных аппаратов служат различные элементы с нелинейным электрическим сопротивлением, величина которого изменяется в достаточно широких пределах, в настоящее время это – тиристоры и транзисторы, раньше использовались магнитные усилители.

Достоинства и недостатки бесконтактных аппаратов по сравнению с обычными пускателями и контакторами

По сравнению с контактными аппаратами бесконтактные имеют преимущества:

– не образуется электрическая дуга, оказывающая разрушительное воздействие на детали аппарата; время срабатывания может достигать небольших величин, поэтому они допускают большую частоту срабатываний (сотни тысяч срабатываний в час),

– не изнашиваются механически,

В то же время, у бесконтактных аппаратов есть и недостатки:

– они не обеспечивают гальваническую развязку в цепи и не создают видимого разрыва в ней, что важно с точки зрения техники безопасности;

– глубина коммутации на несколько порядков меньше контактных аппаратов,

– габариты, вес и стоимость на сопоставимые технические параметры выше.

Бесконтактные аппараты, построенные на полупроводниковых элементах, весьма чувствительны к перенапряжениям и сверхтокам. Чем больше номинальный ток элемента, тем ниже обратное напряжение, которое способен выдержать этот элемент в непроводящем состоянии. Для элементов, рассчитанных на токи в сотни ампер, это напряжение измеряется несколькими сотнями вольт.

Возможности контактных аппаратов в этом отношении неограниченны: воздушный промежуток между контактами протяженностью 1 см способен выдержать напряжение до 30 000 В. Полупроводниковые элементы допускают лишь кратковременную перегрузку током: в течение десятых долей секунды по ним может протекать ток порядка десятикратного по отношению к номинальному. Контактные аппараты способны выдерживать стократные перегрузки током в течение указанных отрезков времени.

Падение напряжения на полупроводниковом элементе в проводящем состоянии при номинальном токе примерно в 50 раз больше, чем в обычных контактах. Это определяет большие тепловые потери в полупроводниковом элементе в режиме длительного тока и необходимость в специальных охлаждающих устройствах.

Все это говорит о том, что вопрос о выборе контактного или бесконтактного аппарата определяется заданными условиями работы. При небольших коммутируемых токах и невысоких напряжениях использование бесконтактных аппаратов может оказаться более, целесообразным, чем контактных.

Бесконтактные аппараты нельзя заменить контактными в условиях большой частоты срабатываний и большого быстродействия.

Безусловно, бесконтактные аппараты даже при больших токах предпочтительны, когда требуется обеспечить усилительный режим управления цепью. Но в настоящее время контактные аппараты имеют оределенные преимущества перед бесконтактными, если при относительно больших токах и напряжениях требуется обеспечивать коммутационный режим, т. е. простое отключение и включение цепей с током при небольшой частоте срабатываний аппарата.

Существенным недостатком элементов электромагнитной аппаратуры, коммутирующих электрические цепи, является низкая надежность контактов. Коммутация больших значений тока связана с возникновением электрической дуги между контактами в момент размыкания, которая вызывает их нагрев, оплавление и, как следствие, выход аппарата из строя.

В установках с частым включением и отключением силовых цепей ненадежная работа контактов коммутирующих аппаратов отрицательно сказывается на работоспособности и производительности всей установки. Бесконтактные электрические коммутирующие аппараты лишены указанных недостатков.

Тиристорный однополюсный контактор

Для включения контактора и подачи напряжения на нагрузку должны замкнуться контакты К в цепи управления тиристоров VS1 и VS2. Если в этот момент на зажиме 1 положительный потенциал (положительная полуволна синусоиды переменного тока), то на управляющий электрод тиристора VS1 будет подано через резистор R1 и диод VD1 положительное напряжение. Тиристор VS1 откроется, и через нагрузку Rн пойдет ток. При смене полярности напряжения сети откроется тиристор VS2, таким образом, нагрузка будет подключена к сети переменного тока. При отключении контактами К размыкаются цепи управляющих электродов, тиристоры закрываются и нагрузка отключается от сети.

Схема электрическая однополюсного контактора

Бесконтактные тиристорные пускатели

Для включения, отключения, реверсирования в схемах управления асинхронными электродвигателями разработаны тиристорные трехполюсные пускатели серии ПТ. Пускатель трехполюсного исполнения в схеме имеет шесть тиристоров VS1, …, VS6, включенных по два тиристора на каждый полюс. Включение пускателя осуществляется посредством кнопок управления SB1 «Пуск» и SB2 «Стоп».

Бесконтактный трехполюсный пускатель на тиристорах серии ПТ

Схема тиристорного пускателя предусматривает защиту электродвигателя от перегрузки, для этого в силовую часть схемы установлены трансформаторы тока ТА1 и ТА2, вторичные обмотки которых включены в блок управления тиристорами.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Читайте также:
Гидравлические прессы своими руками

Пускатели бесконтактные ПБР и ПБН

В процессе различных переключений с использованием электромагнитных пускателей, реле, контакторов и другой аппаратуры, в коммутирующем органе изменяется электрическое сопротивление. В данных приборах эту функцию выполняет промежуток между контактами. В замкнутом состоянии сопротивление становится очень маленьким, а по мере размыкания контактов оно начинает возрастать.

Такие изменения происходят очень быстро, в скачкообразном порядке и сопровождаются разрывом цепи. В некоторых случаях требуется избежать такого разрыва, поэтому в таких цепях для коммутации используются бесконтактные приборы. Типичным представителем этой группы является тиристорный контактор, в состав которого входят тиристоры, имеющие нелинейное электрическое сопротивление, способное изменяться в сторону увеличения или уменьшения.

Принцип действия тиристорного контактора

Действие тиристорного контактора основано на бесконтактной коммутации. Данное физическое явление заключается в изменяющейся проводимости полупроводников, подключаемых в цепь вместе с нагрузкой. Во время работы не наблюдается видимых разрывов цепи, а сам процесс выглядит следующим образом: когда цепь выключена – проводимость полупроводника резко снижается, а сопротивление может достигать нескольких десятков МОм. После включения проводимость элемента восстанавливается, а сопротивление стремится к нулю и измеряется уже в миллиОмах (мОм).

Полупроводниковыми приборами служат различные виды симисторов, тиристоров и транзисторов, включаемых последовательно с нагрузкой в электрическую цепь. Их действие основано на явлении электронно-дырочного перехода (р-п), обеспечивающего одностороннюю проводимость от анода (р) к катоду (п).

На этих же принципах осуществляется работа тиристорного контактора или переключателя переменного тока. Наиболее часто используются схемы со встречно-параллельным включением тиристоров VS1 и VS2, отмеченных на рисунке. Вырабатывание импульсов производится блоком управления при переходе напряжения через нулевую отметку. Под действием импульсов тиристоры открываются поочередно, за счет их сдвига между собой на 180 градусов. В результате, в цепи начинается движение синусоидального переменного тока. Когда мгновенное значение тока нагрузки снижается, тиристоры выключаются.

ТИРИСТОРНЫЕ КОНТАКТОРЫ ПЕРЕМЕННОГО ТОКА

Для коммутации силовых цепей переменного тока раз­работано много различных типов электрических аппаратов: автоматические выключатели, электромагнитные контакторы:

и др. Большинство из них основано на механическом вза­имодействии отдельных узлов и деталей. Наличие подвижных узлов и деталей обусловливает инерционность процессов за­мыкания и размыкания электрических контактов. Обычно время включения и выключения таких аппаратов находится в диапазоне от десятых до сотых долей секунды в зависимости от типа коммутационного аппарата.

Полупроводниковые ключевые элементы позволяют сущест­венно повысить быстродействие коммутационных аппаратов. С этой целью разработан ряд схем, так называемых бескон­тактных коммутационных аппаратов, выполненных преимуще­ственно на основе тиристоров. В литературе такие аппараты часто именуются тиристорными контакторами. Отсутствие подвижных частей и металлических контактных соединений делает эти устройства значительно более надежными и быст­родействующими. Кроме того, как и все схемы с полупровод­никовыми приборами, они обладают большим сроком службы.

В простейшем исполнении силовая часть однофазного тиристорного контактора представляет собой два встречно-параллельно включенных тиристора (рис. 1 а)или один симметричный тиристор. Если тиристоры проводят ток, то контактор включен, если тиристоры ток не проводят, то контактор выключен. Так как ток переменный, то одну полуволну тока проводит тиристор VS1, а другую — тиристор VS2. Различие между ними заключается в законе управления тиристорами. В регуляторе управляющие импульсы на тиристоры поступают с различными углами управления a, а в контакторе — таким образом, чтобы каждый тиристор проводил одну или несколько полных полуволн тока либо оба тиристора были выключены.

Поскольку тиристор является не запираемым по управлению элементом, то для его выключения необходимо обеспечить спадание тока до нуля. Если контактор включен в цепи с активным сопротивлением ZH = RH(рис. 1 а), то моменты прохождения через нуль тока и напряжения совпадают. При активно-индуктивной нагрузке ток отстает от напряжения, переход тока с одного тиристора на другой происходит позже па угол jн, который определяется коэффициентом мощности нагрузки (рис. 1 б). Для того чтобы выключить тиристор раньше момента прохождения тока коммутируемой цепи через нуль, необходимо применять искусственную коммутацию ти­ристоров.

В зависимости от того, выключаются тиристоры под воздействием естественного снижения переменного тока до нуля или посредством их искусственной коммутации, различают тиристорные контакторы с естественной коммутацией (ТКЕ) и искусственной коммутацией (ТКИ). Для того чтобы вы­ключить ТКЕ, достаточно прекратить подачу управляющих импульсов на тиристоры. В этом случае максимальное время выключения тиристора не будет превышать половины периода выходного напряжения. Например, если прекратить подачу управляющих импульсов в момент включения очередного тиристора, то он будет проводить полуволну тока, т. е. в течение 180°, а другой тиристор уже не сможет включиться из-за отсутствия управляющего импульса.

При необходимости иметь время выключения меньшим, чем половина периода выходного напряжения, следует при­менять ТКИ. Однако в этом случае возникает проблема отвода энергии, накопленной в индуктивностях нагрузки, при обесточивании цепи, соединяющей источник электроэнергии с нагрузкой. Это связано с тем, что согласно основным законам коммутации ток в индуктивности не может изменяться скачком. Поэтому чем быстрее происходит отключение цепи, содержащей индуктивность, с током, отличным от нуля, тем большие перенапряжения возникнут на отключающем аппарате. Указанные перенапряжения являются следствием наведения ЭДС в индуктивности, препятствующей изменению значения тока нагрузки. Для устранения перенапряжений (опасных для элементов коммутационного аппарата) следует в случае при­менения ТКИ предусматривать возможность отвода или сброса энергии, накопленной в индуктивностях нагрузки, в какой-либо приемник или накопитель электроэнергии. В частности, таким приемником может служить конденсатор или источник перемен­ного тока, способный принимать электроэнергию.

Читайте также:
Адаптер для перфоратора под сверло

На рис. 2 а, представлена схема ТКИ, в которой отключение основных тиристоров VS1, VS2 производится с помощью колебательного контура, элементами которого являются конденсатор CK и реактор LK. Такие схемы в ли­тературе иногда называют схемами с параллельной ком­мутацией. Когда ТКИ включен, то ток нагрузки протекает и один полупериод через тиристор VS1 и диод VD1; а в другой — через тиристор VS2 и диод VD2. Коммутирующий конденсатор Ск заряжен от маломощного вспомогательного трансформатора Тр с полярностью, указанной на рис. 2, и отделен от основных тиристоров и диодов коммутирующим тиристором VSK.

Для выключения основных тиристоров необходимо подать управляющий импульс на коммутирующий тиристор VSK. При этом в результате разряда конденсатора Ск в колебательном контуре возникает ток iK, который будет протекать через тот основной тиристор, который в этот момент проводит ток, и будет направлен навстречу этому току. Например, допустим, что ток нагрузки проводил тиристор VS1. При включении тиристора VSK через тиристор VS1 начинает протекать разность токов нагрузки iH и контура iK. Пока ток iK меньше тока iH, тиристор VS1 будет включен, а диод VD2 выключен, так как к нему приложено обратное напряжение, обусловленное паде­нием напряжения на тиристоре VS1. При равенстве токов iH и iK тиристор VS1 выключается, ток iK продолжает возрастать, разность токов iK и iH будет протекать через диод VD. На интервале проводимости диода VD2 к тиристору VS1 будет приложено обратное напряжение, равное падению напряжения на диоде VD2. Когда ток iK станет меньше тока iH, диод VD2 выключается, и ток нагрузки iH начинает протекать по контуру диод VD3 — конденсатор СK — реактор LK — тиристор VSK — диод VD1 — нагрузка — источник — диод VD3. При этом будет происходить перезаряд конденсатора СK током нагрузки iH и энергия, запасенная в индуктивности нагрузки, будет переходить в конденсатор СK. Это обстоятельство вызывает необходимость существенно завышать его установленную ем­кость или вводить в схему дополнительные устройства, поглощающие энергию.

Быстродействие рассмотренного ТКИ при использовании его для коммутации цепей с активной нагрузкой ограничено практически только временем выключения тиристоров (обычно десятки микросекунд). Однако при активно-индуктивной нагруз­ке это время увеличивается и зависит от параметров схемы и нагрузки.

Количество основных тиристоров в данном ТКИ может быть уменьшено до одного, как это показано на рис. 2 б.

Тиристорные контакторы постоянного тока

Контакторы постоянного тока имеют ряд индивидуальных особенностей и характеристик. Одной из них является возможность работы с гораздо более высокими частотами переключения, во время регулировок и преобразований тока и напряжения. Этим они заметно отличаются от тиристорных регуляторов, осуществляющих стабилизацию в цепях с переменным током. Устройства постоянного тока обеспечивают более высокий уровень быстродействия, и данный фактор в значительной степени определяет сферу их использования.

Преимущества и недостатки

Несомненные плюсы тиристорных контакторов в сравнении с обычными устройствами заключаются в следующем:

  • При регулярных включениях и отключениях отсутствует электрическая дуга, вызывающая разрушение контактов у электромагнитных устройств.
  • Небольшой промежуток срабатывания дает возможность выполнять учащенные коммутации, практически без ограничений. Рабочие режимы могут быть не только длительными, но и повторно-кратковременными.
  • Отсутствуют движущиеся части, подверженные механическому износу. Поэтому срок эксплуатации тиристорных контакторов намного выше, чем у обычных устройств.
  • Бесшумная работа, благодаря особенностям конструкции.
  • Очень простой ремонт и обслуживание. Любую деталь контактора можно легко заменить в течение короткого времени без демонтажа основного устройства.
  • В случае необходимости тиристорный контактор легко переделывается под другой номинал тока. Для этого устанавливается подходящий тиристор с соответствующими техническими характеристиками.

Управление тиристорным контактором

Если перегрузка была на­столько кратковременной, что конденсатор С2

не успел зарядиться, то напряжение на выходе 7, 5 не появится и пускатель останется в работе. Если
Uc
станет больше напряжения переключения динистора
VD4,
про­изойдет разряд конденсатора
С1
на цепь управления тиристора
VS4
блока
Б2
и последний откроется. При этом прекратится генерация им­пульсов, открывающих
VS1

VS3,
и двигатель остановится. Параметр срабатывания блока защиты регулируется потенциометром
R1.
За счет усложнения блока защиты можно создать выдержку времени в зависи­мости от условия перегрузки. Защита двигателя и силовых тиристоров от токов КЗ в данном пускателе осуществляется быстродействующими предохранителями
FU1

FU3
типа ПНБ-5.

Рис. 4. Тиристорный пускатель

По сравнению с контактными тиристорный пускатель обладает следующими преимуществами:

1. Отсутствие электрической дуги при коммутациях делает аппарат незаменимым при работе во взрывоопасных и пожароопасных средах.

2. Высокая электрическая износостойкость (15-10е циклов).

3. Совершенная защита от токов перегрузки и КЗ, а также при по­тере фазы, что обеспечивает увеличение срока службы двигателей.

4. Допустимое число включений достигает 2000 в час.

Читайте также:
Вальцы для листового металла

5. Длительность отключения не превышает 0,02 с.

6. Высокая надежность и долговечность, а также отсутствие необ­ходимости в уходе при эксплуатации.

Недостатками тиристорного пускателя

являются сложность схемы, большие габариты и высокая стоимость. Несмотря на эти недостатки, бесконтактные пускатели находят широкое применение во взрыво- и по­жароопасных производствах и других областях техники, требующих вы­сокой надежности.

Контактор – принцип действия, схемы подключения

Для бесперебойной работы устройств, которые постоянно включают и выключают, используют устройства для подавления перенапряжения, они распределяют питание и осуществляют управление над подключенными нагрузками. Подача питания происходит через правильные схемы подключения оборудования, для этого используют электродвигатель. Так же осуществляется реверсивное движение и остановка.

Устройство и принцип работы

Магнитные пускатели и контакторы можно подключать самим, достаточно понять принцип работы устройств и настройку схем. Состоит пускатель магнитный из магнитопровода и катушки-индуктора. Магнитный провод имеет две части подвижную и не подвижную, первая закрепляется на пружине и осуществляет свободное движение, а вторая установлена на теле устройства и неподвижна.

В отверстии второй части установлена катушка, ее расположение влияет на номинальные контакторы пускателя с катушкой, подразделяются на 12 V и 24 V, 110 V и 220 V и 380 V. А вторая часть служит для подвижных и неподвижных контактов. Если питание не поступает, первая часть отжимается пружинами, а состояние контактов не меняется и остается в первоначальном виде.

Как только напряжение появляется, при нажатии пусковой кнопки или другом поступлении электроэнергии, катушкой регулируется генерация электромагнитного поля, при котором притягивается первая часть устройства и расположение контактов меняется.

Если напряжение пропадает, зона электромагнитного поля иссякает, пружинная часть отжимается в подвижной стороне контактора в верхнюю сторону, а состояние контактов возвращается в первоначальный вид. Так работает электромагнитный пускатель, напряжение появляется в контактах происходит замыкание, пропадает происходит размыкание. На контактное устройство подключаются постоянные или переменные приборы с напряжением.

Но нужно следить за параметрами устройства, чтобы они не превышали заявленные в инструкции по применению.

Пускатели делятся на два типа с нормальными закрытыми контактами и нормальными открытыми. От этого можно понять, как они работают, первые отключают напряжение, а вторые включают, чтобы питание подавалось нужно использовать номер два, а чтобы подавлялось первый.

Где и зачем применяется

Электромагнитные пускатели и контакторы встраиваются в силовую сеть, которая занимается транспортированием тока, может быть постоянное или переменное напряжение, работа применяется на электромагнитных индукциях. Устройства оснащаются набором сигнальных контактов, через них питаются подключенные приборы. Одни выполняют вспомогательную функцию, а другие рабочую.

Электроустановки и электродвигатели управляются пускателями, но не защищают их при падении напряжения, так как происходит размыкание силового контакта, и работа прибора, на который распределяется электромагнит приостанавливается и самостоятельное включение исключается.

Чтобы привести оборудование в действие нужно воспользоваться кнопкой “пуск”. Это обеспечивает безопасность, так как из-за самопроизвольного включения могут произойти аварии.

В схемы подключения пускателя могут включаться реле с тепловым действием, они предназначены предохранять электродвигатели и другие установки от длительной работы. Бывают однополюсные и двухполюсные магнитные пускатели. Срабатывают при воздействии токовой перегрузки двигателей, по которым проходит напряжение.

Основные характеристики

Для того, чтобы пускатель корректно работал, нужно соблюдать определенные правила при монтаже, знать основы приборов с реле и подбирать схемы магнитного и реверсивного устройства. Контакторы и пускатели работают небольшое время и чаще всего используются устройства с разомкнутым контактом. В одни встраивается сигнальная цепь и предназначена для приборов с потреблением от 0,28 до 12 киловатт, другие для от 5 до 70 киловатт и способны работать с распределением напряжения 220 или 380 V.

Варианты устройств делятся на:

  • открытую;
  • защищенную;
  • пылеводозащищенную;
  • пылебрызгонепроницаемую форму.

Пускатель PME содержит “релюшку” трн, а модель PAE различается по числу реле. Если поступает полное напряжение, катушки прибора надежно работают. основная часть устройств имеет узлы:

  • сердечник;
  • электромагнитная катушка;
  • якорь;
  • каркас;
  • механический датчик;
  • группы контактов, центральные и дополнительные.

В конструкции может быть дополнительная сборка из защитного реле, электропредохранителя добавочного комплекта клеммы и пускового устройства.

Электромагнитная катушка с витками рассчитана на передачу напряжения до 650 V. Катушка размещается в сердце, и большая часть мощности распределяется на силовую часть пружин. В нормальном состоянии контакт разомкнут и пружины удерживаются в верхнем положении и держат магнитнопроводные участки.

Бывают пускатели, которые ограничивают перенапряжение, их используют для полупроводных систем. Катушка начинает работу переменной токовой системы, тип тока и характеристика не влияют на работу установки.

5 схем подключения пускателя, схема подключения через кнопки пуск и стоп

Для подключения схем нужны две клавиши “Пуск” и “Стоп”, производятся каждый в отдельном корпусе или в едином, работа устройства от этого не меняется и называется кнопочным постом.

Если кнопки находятся отдельно, то вопросов не возникает, один контакт подача питания, другой убывание. А если кнопки находятся в одном корпусе, то они имеют каждая по 2 группе контактных линий, две на “Пуск” и две на “Стоп”, у каждой группе своя сторона. Есть отделение с клеммой для контроля подачи тока.

Читайте также:
Вертикальный сверлильный станок своими руками

Схемы подключения магнитных пускателей с катушками 220 V — однофазная сеть и подключение, простой вариант. 220 V подается на катушку верхнюю и нижнюю, которые располагаются в теле устройства. К проводам подключается шнур с входом для питания, как только вилка будет в розетке, начнется работа пускателя. Приводится в действие с любым напряжением, а снимается, когда срабатывает пускатель с контактами t1-t3.

Схемы настройки при помощи кнопок “Пуск” и “Стоп”. Пускатель используется для электродвигателей, работа удобна, когда присутствуют кнопки “Пуск” и “Стоп”. Для постоянной работы устройства их чередуют через подачу фаз на магнитную катушку. Работа пускателя происходит только при нажатой кнопке “Пуск”, то есть не подходит для постоянной работы устройства. В схему можно добавить самоподхват, работа происходит с вспомогательными контактами, которые можно установить на некоторые типы устройств.

Схемы подключения асинхронных двигателей 380 V в пускатели 220 V — подсоединение к контактным проводам трех фаз и по ним распределяется нагрузка. Это пускатели с тепловым реле, оно функционирует для защиты двигателя от нагрева.

Реверсивные схемы подключения — используются в случае, если нужно обеспечение вращения двигателей в противоположные направления. Направление меняется, когда перебрасывается фаза, в схеме присутствует два пускателя и кнопочный блок, в котором располагаются клавиши “стоп”, “вперед” и “назад”.

Силовые схемы подключения контактора-фазы переключаются перенаправлением при вращении двигателей, все контролируется силовой схемой. Когда контакты срабатывают на катушку приходит сигнал, на каждую свой, всего три фазы, двигатель работает в левом направлении. Фаза с на третьей обмотке, b на b, а в фазе номер один изменения не происходят. В этом случае движение мотора будет в правую сторону.

Схемы не сложные, но реверсивная требует двухстороннюю защиту, чтобы не было встречного включения. Разделяется на механическую блокировку и защиту контакта.

Разработка оптимальных решений бесконтактных коммутирующих устройств для электрических машин переменного тока

Рубрика: Технические науки

Дата публикации: 16.01.2020 2020-01-16

Статья просмотрена: 33 раза

Библиографическое описание:

Исматов, Э. Ф. Разработка оптимальных решений бесконтактных коммутирующих устройств для электрических машин переменного тока / Э. Ф. Исматов. — Текст : непосредственный // Молодой ученый. — 2020. — № 3 (293). — С. 45-46. — URL: https://moluch.ru/archive/293/65952/ (дата обращения: 26.11.2021).

В данной статье рассмотрены вопросы коммутации электродвигателей и безопасного управления электрическими машинами во время коммутации.

Ключевые слова: компенсация, бесконтактная, блок, ПТ-16, ПТ-40, силовой блок, реле, коммутация, статор, ротор, электронный ключ.

Электромагнитные пускатели широко применяются для пуска электродвигателей и управления ими на промышленных предприятиях [1]. Но некоторые дефекты показали, что электромагнитные пускатели не могут применяться во всех отраслях промышленности и в шахтах [2]. Например, во время коммутации в газоразрядных и пожароопасных помещениях электромагнитные пускатели образуют коммутационную дугу, вследствие чего в шахтах происходит пожар. Статистика показала, что коэффициент полезного действия магнитных пускателей меньше, чем автоматических [1].

В современном мире распространены бесконтактные пускатели, имеющие больший потенциал, чем электромагнитные. Бесконтактные пускатели по сравнению с магнитными пускателями и автоматическими выключателями обладают следующими преимуществами [2]:

− возможность осуществления большого количества коммутаций (сотни или тысячи срабатываний в час);

− одновременное отключение фаз питающей сети и значительное снижение мощности потребления цепями управления;

− повышенное быстродействие и возможность работать в сильных электромагнитных полях электролизных и электродуговых производств, а также в пожароопасных помещениях;

− повышение надежности из-за отсутствия электрической дуги и механического изнашивания, залипания и подгорания контактов.

Бесконтактные пускатели выполняются на полупроводниковых элементах, и управление ими в зависимости от типа будет разным [1]. Сложность системы управления пускателями является одним из факторов, препятствующим широкому применению таких коммутационных аппаратов [1, 2].

Мы ведем научные исследования по разработке и внедрению бесконтактных коммутационных аппаратов на базе различных полупроводниковых элементов, обладающих простой, экономичной и надежной системой управления.

Одним из таких устройств является бесконтактный пускатель на базе тиристоров. Электрическая схема такого пускателя представлена на рис. 1.

Рис. 1. Электрическая схема бесконтактного тиристорного пускателя для асинхронных двигателей напряжением до 1000В:а — силовая цепь пуска АД; б — цепь управления

Предлагаемая нами схема бесконтактного тиристорного пускателя имеет более простое управление при сохранении всех преимуществ бесконтактных пускателей на базе полупроводниковых элементов [2].

Новый бесконтактный трехполюсный тиристорный пускатель представляет собой устройство, состоящее из шести тиристоров, шести резисторов, двух малогабаритных промежуточных реле и теплового реле для защиты (рис. 1).

Подача питания к двигателю начинается с подачи напряжения на реле КL1 и KL2 одновременно. Реле КL1 и KL2 срабатывают и замыкают свои контакты, тем самым подавая сигналы к управляющим электродам тиристоров.

Силовые тиристоры открываются, и подается питание напряжением 380В к зажимам асинхронного электродвигателя. Вследствие этого двигатель запускается и начинает вращаться. Если в процессе пуска или в нормальном режиме возникает короткое замыкание в двигателе, то срабатывает тепловое реле, и электродвигатель отключается.

Таким образом, новый бесконтактный трехполюсный тиристорный пускатель может быть использован в качестве коммутационного аппарата для пуска электродвигателей и технологического оборудования на промышленных предприятиях.

Читайте также:
Барабанный фильтр из стиральной машины своими руками

Следует отметить, что бесконтактные пускатели такого типа будут очень полезны для двухскоростных двигателей с полюсно-переключаемыми обмотками, где требуется большое количество коммутаций с частыми пусками, переходами с одной скорости на другую и торможением.

  1. Зарипов Ш. У. и др. Разработка рациональных решений бесконтактного управления электроприводами горных машин // Современные научные исследования и разработки. — 2017. — №. 8. — С. 201–205.
  2. Саъдуллаев М. С. и др. Использование устройств, состоящих из бесконтактных элементов, в управлении компенсирующими устройствами // Молодой ученый. — 2018. — №. 1. — С. 23–25.

20 Бесконтактные контакторы и пускатели на базе тиристорных элементов

Асинхронные электродвигатели просты по конструкции, дешевы, массово применяются в различных производствах. Не обходятся без них домашние мастера, запитывая их от 220 вольт с пусковыми и рабочими емкостями.

Но, есть альтернативный вариант. Это — подключение трёхфазного двигателя к однофазной сети без конденсаторов, который тоже имеет право на существование.

Ниже я показываю 4 схемы реализации такого проекта. Вы можете выбрать для себя любой из них, более подходящий под ваши личные интересы и местные условия эксплуатации.

Преимущества схемы тиристорного преобразователя: автор В Соломыков

С этой темой я впервые столкнулся в конце 1998 года, когда к нам в электролабораторию РЗА пришел друг связист с журналом Радио за №6 от 1996 года и показал статью про безконденсаторный запуск.

Мы сразу решили испытать ее в деле, благо все детали, включая тиристоры и подходящий двигатель, у нас имелись. Как раз был перерыв на обед.

Для проверки спаяли электронный блок навесным монтажом. Справились где-то меньше, чем за час. Схема заработала практически без наладки. Оставили ее для наждака.

Порадовали маленькие габариты блока и отсутствие необходимости подбирать конденсаторы. Особых отличий в потере мощности по сравнению с конденсаторным пуском замечено не было.

Изучение тиристорного пускателя серии ПТ

Цель работы –изучить конструкцию, назначение, принцип действия и ввод в эксплуатацию тиристорных пускателей серии ПТ.

Программа работы

1. Изучить назначение, общее устройство и принцип действия тиристорного пускателя типа ПТ.

2. Опробовать работу тиристорного пускателя под напряжением.

3. Проверить действие блока защиты тиристорного пускателя.

3.1. по температуре перегрева тиристоров ПТ;

3.2. от тока короткого замыкания;

3.3. от несимметрии напряжения.

Назначение

Пускатели типа ПТ-16-380-У5, ПТ-40-380-У5 предназначены для дистанционного включения и отключения, а реверсивные пускатели типа ПТ-16-380Р-У5 для дистанционного включения реверса и отключения трёхфазных электродвигателей. Нереверсивные пускатели могут использоваться для включения и отключения других видов трёхфазных активных нагрузок. Пускатели предназначены для использования в условиях умеренного климата на подвижных объектах и в стационарных условиях: в шахтах, рудниках, а так же нефтяной, газовой, химической и других отраслях промышленности при условии установки их в защитные оболочки, соответствующие условиям эксплуатации и при наличии в схеме электроснабжения индивидуального или группового аппарата с видимым разрывом цепи.

Каждый тип пускателя имеет два исполнения:

Исполнение 1 – для взрывоопасных помещений;

Исполнение 2 – для общепромышленного применения.

Условия эксплуатации

а) климатические воздействия:

1. температура окружающего воздуха от минус 10 до 50ºС;

2. верхнее значение относительной влажности окружающего воздуха 95 ± 3%, при температуре 35ºС и более низких температурах без конденсации влаги;

3. давление воздуха в пределах 700 – 1000 мм.рт.ст.

б) механические воздействия:

1. вибрации в диапазоне частот от 1 до 60 Гц с ускорением до 2g;

2. ударные перегрузки с ускорением до 15g;

3. длительные наклоны в любую сторону до 45º.

Пускатели не допускают работу в агрессивных средах, содержащих пары кислот и щелочей в концентрации разрушающей металл и изоляцию, а так же в средах с токопроводящей пылью.

Технические характеристики

Пускатели предназначены для работы в следующих режимах:

а) продолжительном, с числом включений в час не более 10.

б) повторно – кратковременном, с продолжительностью включения не более 60%, при частоте до 600 включений в час с номинальными токами нагрузки.

Основные технические данные пускателей ПТ-16 (40):

Напряжение в сети – 380 В;

Частота питающей сети – 50 Гц;

Номинальный ток – 16 А (40 А);

Сопротивление электрической изоляции – 50 МОм в холодном состоянии, – 6 МОм в нагретом состоянии.

Средний ресурс не менее 10000 час.

Пускатели имеют максимальную токовую защиту и тепловую защиту от перегрузок. Время срабатывания тепловой защиты от перегрузок является функцией тока перегрузки и температуры окружающей среды.

Пускатели поставляются с защитой настроенной так, что бы максимальная токовая защита срабатывала при 9 – 10 кратном номинальном токе, а тепловая защита от перегрузок срабатывала при температуре на корпусе тиристора не выше 105ºС.

Управление пускателями кнопочное с фиксацией и без фиксации команды. Возможно управление от бесконтактных логических элементов.

Устройство и принцип работы.

Конструктивно пускатель выполнен в виде единого блока. Тиристоры установлены на охладители. На нижнем правом охладителе закреплён термодатчик. В нижней части пускателя размещён блок управления, который прикреплён к несущим уголкам винтами и может откидываться для доступа к элементам расположенным с обратнойстороны блока. Реле в пускателях 1 исполнения размещены в контейнерах для защиты контактов реле от механических повреждений и пыли. Ввод монтажных проводов в контейнер выполнен через сальник с резиновым уплотнением.

Читайте также:
Гибка тонкостенных труб из нержавейки

Пускатели исполнения 2 отличаются от пускателей исполнения 1 только материалом изоляционных панелей.

Изоляция, расстояние утечки и зазоры пускателей исполнения 1 соответствуют правилам изготовления взрывозащищённого и рудничного оборудования ОАА 684 053–67.

Принципиальные электрические схемы пускателей унифицированы и отличаются между собой только количеством элементов и типом силовых тиристоров. Схема пускателя состоит из силовой схемы, схемы управления, схемы защиты и источника питания. Силовая часть состоит из тиристоров, включенных в каждую фазу встречно – параллельно.

Принцип работы пускателей заключается в бесконтактном включении и отключении нагрузки, что осуществляется силовыми тиристорами. Управление силовыми тиристорами осуществляется широтно-импульсным методом. Импульсы управления тиристорами формируются из анодного напряжения тиристоров. Работу пускателя рассмотрим на примере одной фазы нереверсивного пускателя.

В исходном состоянии все тиристоры закрыты и находятся под фазным напряжением. После замыкания контактов реле KL1 допустим, что положительная полуволна напряжения сети тиристора VS1 через управляющий переход тиристора VS2, контакт реле KL1, резистор R14 и управляющий переход тиристора VS1 будет протекать ток управления IУ1. Тиристор VS1 откроется. С открытием тиристора автоматически снимается сигнал управления, так как падение напряжения на открытом тиристоре не превышает 1В. При переходе тока через нуль тиристор VS1 закрывается. Теперь положительная полуволна напряжения сети будет приложена к аноду тиристора VS2. Ток управления будет протекать от анода к катоду тиристора VS2 через управляющий переход тиристора VS1, резистор R14, контакт реле KL1 и управляющий электрод тиристора VS2. Тиристор VS2 откроется и с него автоматически снимается сигнал управления. Импульсы управления поступают на тиристоры синхронно с напряжением сети. В начале каждого положительного полупериода, т.е. через 360 эл. град. Длительность импульсов управления зависит от времени открытия тиристоров и автоматически устанавливается оптимальной в зависимости от изменения коэффициента мощности нагрузки. Аналогично формируются импульсы управления тиристорами и в других фазах. При таком способе формирования импульсов управления контакты включённых реле практически находятся в обесточенном состоянии, так как через них проходит слаботочный сигнал, длительностью от десятков микросекунд до единиц миллисекунд в течении каждого полупериода тока. Поэтому срок службы реле определяется не электрической, а механической износоустойчивостью, которая у электромагнитных реле достигает десятков миллионов циклов.

Работает пускатель следующим образом. При подаче напряжения сети на клеммы пускателя Л1, Л2, Л3 получает питание трансформатор TV. (смотри принципиальную электрическую схему).

Выпрямленное напряжение с выпрямителей на диодах VD5 – VD6 подаётся на элементы схемы защиты. На элементы схемы управления напряжение с выпрямителей поступает только при нажатии кнопки «Включено».

При замыкании кнопки «Включено» включается соответственно реле KL1 или KL2. После включения реле, замыкаются его нормально открытые контакты в цепях управления тиристоров. Тиристоры открываются и напряжение сети прикладывается к нагрузке.

При освобождении кнопки «Включено» (при работе пускателя без фиксации команды) или размыкании кнопки отключено (при работе с фиксацией команды) реле отключается, снимаются импульсы управления с тиристоров и нагрузка отключается.

Блок защиты предназначен для отключения пускателя в аварийных режимах и удержания его в отключенном состоянии до осмотра нагрузки и устранения неисправности. Резистор R6 служит для регулирования порога срабатывания тепловой защиты от перегрузки.

Рассмотрим подробно работу блока защиты от различных аварийных режимов.

Перегрузка по току

Нажатием на кнопку «Пуск вперёд» («Пуск назад») подаётся отрицательный потенциал от источника питания (12) на один конец (26) катушки KL1 ((27) катушки KL2), а на другой конец (23) подан положительный потенциал через открытый коллекторный переход транзистора VТ3. Реле срабатывает и замыкает свои контакты в цепях управления трёх тиристорных пар соответствующих фаз. Транзистор VT3 находится в открытом состоянии при нормальном режиме работы тиристорного пускателя, так как на базу подано отрицательное отпирающее напряжение от источника питания (12) через балластный резистор R11 и резистор смещения R12.

При симметричной трёхфазной нагрузке и отсутствии асимметрии питающего напряжения токи в линейных проводах Л1, Л2 и Л3 одинаковые и сдвинуты по фазе на 120о. Вторичные обмотки трансформаторов тока ТТ1 и ТТ2 включены по схеме геометрической разности и результирующий ток, равный линейному току любой фазыпротекает по резистору R13, создавая на нём падение напряжения. Это напряжение после выпрямления диодным мостом VD14 – VD17 подаётся на потенциометр R5. С его подвижного контакта часть отрицательного потенциала подаётся на анод VD8, при этом его величина меньше напряжения пробоя стабилитрона, поэтому на базе VТ1 действует положительное напряжение и транзистор закрыт. При увеличении линейного тока в нагрузке более чем на 20% номинального значения напряжение на R5 так же возрастёт, что приведёт к пробою VD8 и подаче через диод VD7 на базу VT1 отпирающего потенциала. Транзистор открывается до насыщения и положительный потенциал с его коллектора через диод VD1 подаётся на базу VT3 и запирает транзистор. Катушка включённого реле KL1 (KL2) теряет питание и размыкает свои контакты в цепях управления тиристоров, что приводит к их выключению.

Читайте также:
Бензорез по металлу своими руками

Конденсатор С3, шунтирующий потенциометр R5, не позволяет кратковременным броскам тока в линейных проводах, даже при запуске двигателя, включить токовую защиту.

При несимметричном режиме работы один из фазных токов может не измениться, например IА, в другой фазе даже уменьшиться (IС), а в третьей возрасти (IВ), как показано на рисунок 24б. В любом случае геометрическая разность токов IА – IС возрастёт и при асимметрии более 20% сработает защита, как описано выше.

а б

Рисунок 24 –Векторные диаграммы фазных токов в:

а) симметричном, б) несимметричном режимах работы нагрузки

Перегрев двигателя

Для осуществления этого вида защиты на корпус двигателя (обычно внутри клемной коробки) приклеивают термодатчик RД, который подключён к клеммам 2, 3 тиристорного пускателя, и его сопротивление увеличивается с повышением температуры статора.

Второй термодатчик R8 закреплён на одном из радиаторов тиристора. Тиристоры в схеме выбраны с шести кратным запасом по току, поэтому при номинальных токах пускателя радиаторы всегда будут иметь температуру окружающей среды. Это означает, что осуществляется защита не от перегрева обмотки статора, а от превышения температуры двигателя над температурой окружающей среды. Величина этого превышения задаётся резистором R6.

В исходном состоянии транзисторы VТ1 и VТ2 закрыты. Увеличение сигнала с резисторов R6 или R7 до величины опорных напряжений стабилитронов VD4 и VD8 приводит к отпиранию транзисторов VТ2, а затеми VТ1, в результате чего переход эмитер – база транзистора VТ3 шунтируется транзистором VТ1 через диод VD1.

Транзистор VТ3 запирается, что приводит к отключению реле KL1 или KL2.

Так как транзистор VT2 остаётся при этом открытым по цепи точка 2(+) блока защиты, переход эмитер – коллектор транзистора VT1, резистор R2, переход база – эмитер транзистора VТ2, стабилитрон VD4, точка 4 (-) блока защиты, то транзистор Т3 остаётся заперт до возвращения схемы в исходное состояние, для чего необходимо отключить напряжение сети на входе пускателя.

Рисунок 25 — Принципиальная схема тиристорного пускателя ПТ-16

Щелкаем реле правильно: коммутация мощных нагрузок

Управление мощными нагрузками — достаточно популярная тема среди людей, так или иначе касающихся автоматизации дома, причём в общем-то независимо от платформы: будь то Arduino, Rapsberry Pi, Unwired One или иная платформа, включать-выключать ей какой-нибудь обогреватель, котёл или канальный вентилятор рано или поздно приходится.

Традиционная дилемма здесь — чем, собственно, коммутировать. Как убедились многие на своём печальном опыте, китайские реле не обладают должной надёжностью — при коммутации мощной индуктивной нагрузки контакты сильно искрят, и в один прекрасный момент могут попросту залипнуть. Приходится ставить два реле — второе для подстраховки на размыкание.

Вместо реле можно поставить симистор или твердотельное реле (по сути, тот же тиристор или полевик со схемой управления логическим сигналом и опторазвязкой в одном корпусе), но у них другой минус — они греются. Соответственно, нужен радиатор, что увеличивает габариты конструкции.

Я же хочу рассказать про простую и довольно очевидную, но при этом редко встречающуюся схему, умеющую вот такое:

  • Гальваническая развязка входа и нагрузки
  • Коммутация индуктивных нагрузок без выбросов тока и напряжения
  • Отсутствие значимого тепловыделения даже на максимальной мощности

Но сначала — чуть-чуть иллюстраций. Во всех случаях использовались реле TTI серий TRJ и TRIL, а в качестве нагрузки — пылесос мощностью 650 Вт.

Классическая схема — подключаем пылесос через обычное реле. Потом подключаем к пылесосу осциллограф (Осторожно! Либо осциллограф, либо пылесос — а лучше оба — должны быть гальванически развязаны от земли! Пальцами и яйцами в солонку не лазить! С 220 В не шутят!) и смотрим.

Пришлось почти на максимум сетевого напряжения (пытаться привязать электромагнитное реле к переходу через ноль — задача гиблая: оно слишком медленное). В обе стороны бабахнуло коротким выбросом с почти вертикальными фронтами, во все стороны полетели помехи. Ожидаемо.

Резкое пропадание напряжения на индуктивной нагрузке не сулит ничего хорошего — ввысь полетел выброс. Кроме того, видите вот эти помехи на синусоиде за миллисекунды до собственно отключения? Это искрение начавших размыкаться контактов реле, из-за которого они однажды и прикипят.

Итак, «голым» реле коммутировать индуктивную нагрузку плохо. Что сделаем? Попробуем добавить снаббер — RC-цепочку из резистора 120 Ом и конденсатора 0,15 мкФ.

Лучше, но не сильно. Выброс сбавил в высоте, но в целом сохранился.

Та же картина. Мусор остался, более того, осталось искрение контактов реле, хоть и сильно уменьшившееся.

Вывод: со снаббером лучше, чем без снаббера, но глобально проблемы он не решает. Тем не менее, если вы желаете коммутировать индуктивные нагрузки обычным реле — ставьте снаббер. Номиналы надо подбирать по конкретной нагрузке, но 1-Вт резистор на 100-120 Ом и конденсатор на 0,1 мкФ выглядят разумным вариантом для данного случая.

Литература по теме: Agilent — Application Note 1399, «Maximizing the Life Span of Your Relays». При работе реле на худший тип нагрузки — мотор, который, помимо индуктивности, при старте имеет ещё и очень низкое сопротивление — добрые авторы рекомендуют уменьшить паспортный ресурс реле в пять раз.

Читайте также:
Ванадий металл или неметалл

А теперь сделаем ход конём — объединим симистор, симисторный драйвер с детектированием нуля и реле в одну схему.

Что есть на этой схеме? Слева — вход. При подаче на него «1» конденсатор C2 практически мгновенно заряжается через R1 и нижнюю половину D1; оптореле VO1 включается, дожидается ближайшего перехода через ноль (MOC3063 — со встроенной схемой детектора нуля) и включает симистор D4. Нагрузка запускается.

Конденсатор C1 заряжается через цепочку из R1 и R2, на что уходит примерно t=RC

100 мс. Это несколько периодов сетевого напряжения, то есть, за это время симистор успеет включиться гарантированно. Далее открывается Q1 — и включается реле K1 (а также светодиод D2, светящий приятным изумрудным светом). Контакты реле шунтируют симистор, поэтому далее — до самого выключения — он в работе участия не принимает. И не греется.

Выключение — в обратном порядке. Как только на входе появляется «0», C1 быстро разряжается через верхнее плечо D1 и R1, реле выключается. А вот симистор остаётся включённым примерно 100 мс, так как C2 разряжается через 100-килоомный R3. Более того, так как симистор удерживается в открытом состоянии током, то даже после отключения VO1 он останется открытым, пока ток нагрузки не упадёт в очередном полупериоде ниже тока удержания симистора.

Красиво, не правда ли? Причём при использовании современных симисторов, устойчивых к быстрым изменениям тока и напряжения (такие модели есть у всех основных производителей — NXP, ST, Onsemi, etc., наименования начинаются с «BTA»), снаббер не нужен вообще, ни в каком виде.

Более того, если вспомнить умных людей из Agilent и посмотреть, как меняется потребляемый мотором ток, получится вот такая картинка:

Стартовый ток превышает рабочий более чем в четыре раза. За первые пять периодов — то время, на которое симистор опережает реле в нашей схеме — ток падает примерно вдвое, что также существенно смягчает требования к реле и продлевает его жизнь.

Да, схема сложнее и дороже, чем обычное реле или обычный симистор. Но часто она того стоит.

Тиристорный пускатель для асинхронного двигателя своими руками

Выключатели тиристорные

Для коммутации силовых цепей переменного тока используются преимущественно тиристоры. Они способны пропускать большие токи при малом падении напряжения, включаются сравнительно просто подачей на управляющий электрод маломощного импульса управления. При этом их основной недостаток — трудность выключения — в цепях переменного тока не играет роли, так как переменный ток обязательно два раза за период проходит через нуль, что обеспечивает автоматическое выключение тиристора.
Схема однофазного тиристорного коммутирующего элемента приведена на рис. 9.1.9. Импульсы управления формируются из анодных напряжений тиристо­ров. Если на аноде тиристора VS1

положительная полуволна напряжения, то при замыкании контакта
К
через диод
VD1
и резистор
R
пройдет импульс тока управ­ления тиристором
VS1.
В результате тиристор
VS1
включится, анодное напряжение упадет почти до нуля, сигнал управления исчезнет, но тиристор останется в прово­дящем состоянии до конца полупериода, пока анодный ток не пройдет через нуль. В другой полупериод, при противоположной полярности напряжения сети, анало­гично включается тиристор
VS2.
Пока контакт
К
будет замкнут, тиристоры будут автоматически поочередно включаться, обеспечивая прохождение тока от источни­ка к нагрузке.

Контакторы (пускатели).Тиристорные элементы (рис.9.1.9) являются основой однофазных и трехфазных контакторов. На рис. 9.1.10 в качестве примера изображена схема реверсивного пускателя для асинхронных двигателей. Силовыми коммутирующими элементами являются тиристоры VS1 — VS10,

которые открываются контактами
К11, К12, К13
реле
К1
(вперед) или контактами
К21, К22, К23
реле
К2
(назад). Трансформаторы тока
ТА1
и
ТА2
подают сигнал перегрузки в блок защиты
БЗ,
который, воздействуя на базу транзистора
VT,
снимает питание реле
К1
и
К2
и тем самым отключает пускатель.

Аналогично устроены тиристорные станции управления асинхронными нерегулируемыми электроприводами мощностью до 100 кВт типа ТСУ. Станции выполняют операции пуска, останова, динамического торможения и реверса двигателя.

Использование тиристоров в качестве бесконтактных аппаратов на постоянном токе затруднительно из-за проблемы отключения. Если в цепях

переменного тока тиристоры включаются автоматически при прохождении тока через нуль, то в цепях постоянного тока приходится применять специальные меры по принудительному снижению тока тиристора до нуля, т. е. производить так нарываемую принудительную коммутацию тока тиристора. Существует много разнообразных схем принудительной коммутации. Большинство из них содержит коммутирующие конденсаторы, которые в нужный момент с помощью вспомогательных тиристоров вводятся в цепь основного тиристора и включают

Рис. 9.1.9. Схема однофазного тиристорного коммутирующего элемента

На рис. 9.1.11 изображена одна из схем принудительной коммутации. При подаче управляющего импульса на силовой тиристор VS

включается цепь нагрузки
R
н, (ток через тиристор
i
T равен сумме токов нагрузки
i
Н и через конденсатор
i
С), коммутирующий конденсатор
С
заряжается до напряжения источника
U.
Полярность напряжения
ис
указана на рис. 9.1.11,
а
. Схема готова к отключению, и если в момент
t
1подать управляющий импульс на вспомогательный тиристор
VSB,
то конденсатор С окажется включен ым

Читайте также:
Гравировка на нержавейке в домашних условиях

Рис. 9.1.10. Схема нереверсивного пускателя

параллельно тиристору VS,

ток нагрузки перейдет с тиристора
VS
на конденсатор
С
и тиристор
VS
выключится. Под действием ЭДС источника конденсатор будет перезаряжаться. Напряжение конденсатора
ис
изменится в процессе перезаряда от —
U
до
+U
(рис. 9.1.11,
б
), а ток
ic
постепенно спадет до нуля. Нагрузка

окажется отключенной от источника. Если теперь снова в момент
t2
включить нагрузку

, открыв тиристор
VS,
то опять конденсатор
С
зарядится до напряжения —
U
и схема будет готова к повторному отключению.

Таким образом, отключение тиристора на постоянном токе оказывается сложнее, чем на переменном. Эта проблема решится окончательно лишь после

Рис. 9.1.11. Схема тиристорного выключателя постоянного тока (а

) и диаграмма его работы (
б
)

Рис. 9.1.12. Схема бесконтактного выключателя Рис. 9.1.13. Осциллограмма отключения тока короткого замыкания

создания мощных, полностью управляемых тиристоров, способных запираться при воздействии только на цепь управления.

Выключатели автоматические.На базе тиристорных элементов (см. рис. 9.1.9) выполняются автоматические бесконтактные выключатели серии ВА81 на токи до 1000 А. Они предназначены для защиты электрических установок в сетях напряжением 380/660 В переменного тока частотой 50 — 60 Гц при перегрузках и коротких замыканиях, а также для коммутаций с различной частотой включения. В этих выключателях применяется принудительное выключение тиристоров с помощью схемы принудительной коммутации (рис.

9.1.12). Основной тиристор VS1

серии Т-160 управляется импульсами от генератора повышенной частоты (на рисунке не показан). Выключение тиристора
VS1
производится разрядом конденсатора С через коммутирующий тиристор
VS2.
Последний включается от напряжения коммутирующего конденсатора
С
через маломощный тиристор
VS3,
что обеспечивает снижение мощности схемы управления. Конденсатор С

заряжается от напряжения сети через трансформатор и диод
VD1.
Каждый выключатель состоит из трех силовых блоков с встречно-параллельно включенными основными тиристорами.

Благодаря использованию принудительной коммутации тиристоров защита от коротких замыканий осуществляется с ограничением тока в процессе отключения. На рис. 9.1.13 изображена осциллограмма отключения тока короткого замыкания тиристорным выключателем. Кривая 1

показывает нарастание тока короткого замыкания при отсутствии защиты, а кривая 2 — при отключении тиристорного выключателя схемой принудительной коммутации. Как видно из рисунка, в этом, случае нарастание тока короткого замыкания прерывается и максимальный ток imax составляет не более 0,02 — 0,05 ударного тока короткого замыкания.

Устройства выходные (промежуточные реле).Схемы на рис. 9.1.9 широко используются в качестве коммутирующих устройств цепей управления исполнительных аппаратов (пускатели, контакторы, электромагниты, муфты и т. п.). Примером могут служить устройства выходные бесконтактные типа УВБ-11, которые предназначены для усиления выходных командных сигналов логических устройств и коммутации цепей нагрузки переменного и постоянного тока. Они рассчитаны на коммутацию цепей переменного тока до 6 А и напряжением до 380 В, цепей постоянного тока до 4 А и 220 В.

На рис. 9.1.14 приведена схема усилителя УВБ-11-19-3721, предназначенная для коммутации цепей переменного тока. В качестве коммутирующего элемента используется симистор VS

типа ТС2-25, зашунтированный варистором
R
для защиты . от перенапряжений. Включение симистора осуществляется путем соединения его управляющего электрода с одним из силовых выводов с помощью контакта герконового реле
К.
Это реле одновременно осуществляет и гальваническую развязку входной и выходной цепей. Выключение сеимистора

Тиристорные контакторы постоянного тока

Контакторы постоянного тока имеют ряд индивидуальных особенностей и характеристик. Одной из них является возможность работы с гораздо более высокими частотами переключения, во время регулировок и преобразований тока и напряжения. Этим они заметно отличаются от тиристорных регуляторов, осуществляющих стабилизацию в цепях с переменным током. Устройства постоянного тока обеспечивают более высокий уровень быстродействия, и данный фактор в значительной степени определяет сферу их использования.

Тиристорный пускатель , собрать пускатель из тиристоров Т161

9.1.14. Усилитель УВБ-11-19-3721: а —

условное обозначение;
б
— функциональная схема

при разомкнутом контакте К

происходит самопроизвольно при первом переходе тока нагрузки через нуль.

Для того чтобы схема управлялась логическими сигналами от других элементов, предусмотрен согласующий каскад на ИС типа К511ЛИ1, выход которого подключен к обмотке герконового реле К.

В усилителях, предназначенных для коммутации цепей нагрузки

постоянного тока, эта коммутация осуществляется тиристором, который выключается с помощью схемы принудительной коммутации, т. е. путем разряда на тиристор заряженного заранее конденсатора.

ЛЕКЦИЯ № 30

9.2. Микропроцессоры и электронные управляющие машины

9.2.1. Общие сведения.

9.2.2. Функциональная схема ЭВМ.

9.2.3. Электронные и микропроцессорные аппараты, их классификация и

физические явления в них.

9.2.4.Функциональная схема управления электродвигателем постоянного

тока с помощью микропроцессора.

Общие сведения

В настоящее время для улучшения технических характеристик, повышения надежности и сокращения времени монтажа аппараты автоматического управления и регулирования электрического привода выполняются в виде комплектных станций управления (КСУ). Эти станции проектируются по типовым схемам и собираются на заводе-изготовителе с применением наиболее высокопроизводительного оборудования, что ведет к сокращению материалоемкости и трудоемкости, позволяет быстро внедрять новейшие достижения науки и техники. КСУ создаются на базе либо традиционных электромагнитных аппаратов (автоматов, пускателей, контакторов, реле), либо дискретных полупроводниковых элементов, либо совместного использования и тех и других изделий. Для КСУ характерна фиксированная последовательность всех функциональных операций. Любое изменение поставленной ранее функциональной задачи требует перемонтажа принципиальной схемы КСУ и последующей наладки, что связано с затратами дополнительного труда и, времени. Поэтому создаваемые в настоящее время системы программного управления металлорежущими станками, роботами, технологическими процессами требуют наличия легко изменяемой программы управления.

Читайте также:
Бытовые сварочные аппараты 220 вольт какой лучше

Развитие полупроводниковой техники привело к созданию больших

Рис. 9.2.1. Функциональная схема ЭВМ

интегральных микросхем (БИС) с очень высокой степенью интеграции. БИС на одном кристалле имеют несколько десятков тысяч элементов и способны реализовать сложнейшие функции управления. Применение БИС в комплектных

устройствах автоматического управления создает исключительно широкие возможности в гибком изменении их программ, уменьшении габаритов, повышении надежности и долговечности. На основе БИС создаются микропроцессоры.

Дата добавления: 2017-05-02; ;

Преимущества и недостатки

Несомненные плюсы тиристорных контакторов в сравнении с обычными устройствами заключаются в следующем:

  • При регулярных включениях и отключениях отсутствует электрическая дуга, вызывающая разрушение контактов у электромагнитных устройств.
  • Небольшой промежуток срабатывания дает возможность выполнять учащенные коммутации, практически без ограничений. Рабочие режимы могут быть не только длительными, но и повторно-кратковременными.
  • Отсутствуют движущиеся части, подверженные механическому износу. Поэтому срок эксплуатации тиристорных контакторов намного выше, чем у обычных устройств.
  • Бесшумная работа, благодаря особенностям конструкции.
  • Очень простой ремонт и обслуживание. Любую деталь контактора можно легко заменить в течение короткого времени без демонтажа основного устройства.
  • В случае необходимости тиристорный контактор легко переделывается под другой номинал тока. Для этого устанавливается подходящий тиристор с соответствующими техническими характеристиками.

1.2.2 Магнитный пускатель

Магнитный пускатель состоит как бы из верхней и нижней части (Рис.6).

Рис. 6 Устройство магнитного пускателя

В верхней части находится подвижная контактная система, дугогасительная камера и подвижная половинка электромагнита, которая механически связана с группой силовых контактов подвижной контактной системы (Рис. 7).

Рис. 7 Устройство верхней части магнитного пускателя

Нижняя часть пускателя состоит из катушки, возвратной пружины и второй половинки электромагнита (Рис.8). Возвратная пружина возвращает верхнюю половинку в исходное положение после прекращения подачи питания на катушку, тем самым, разрывая силовые контакты пускателя.

Рис. 8 Устройство нижней части магнитного пускателя

Обе половинки электромагнита набраны из Ш-образных пластин, сделанных из электромагнитной стали (Рис. 9). Это наглядно видно, если вытащить нижнюю половинку электромагнита.

Рис. 9 Электромагнит

Катушка пускателя намотана медным проводом, и содержит N-ое количество витков, рассчитанное на подключение определенного питающего напряжения равного 24, 36, 110, 220 или 380 Вольт (Рис.10).

Рис. 10 Катушка пускателя

При подаче напряжения питания в катушке возникает магнитное поле и обе половинки стремятся соединиться, образуя замкнутый контур. Как только отключаем питание, магнитное поле пропадает, и верхняя часть возвращается возвратной пружиной в исходное положение.

Устройство магнитного пускателя

Все виды магнитных пускателей объединяют такие элементы конструкции, как электромагнит переменного тока, система подвижных и неподвижных силовых и вспомогательных контактов. Несущей частью является корпус из термостойких и негорючих пластиков. Эти пластмассы должны быть механически прочными и не деформироваться при повышенной температуре. Любой пускатель, как правило, трехфазный.

Классификация магнитных пускателей делается по нескольким признакам, среди которых обычно главной является величина пускателя. Под величиной подразумеваются не габариты или вес пускателя, а то, какой ток он может коммутировать и насколько он устойчив к дуге в цепях с индуктивностями (при отключении электродвигателя). Основой является нереверсивный магнитный пускатель, так как реверсивные собираются из последних. Работа магнитных пускателей протекает в разных условиях, поэтому их также классифицируют по степени защищенности: открытое, защищенное, пылебрызгонепроницаемое.

Работа магнитного пускателя очень часто требует наличия теплового реле. Все типы магнитных пускателей имеют конструктивно совместимые тепловые реле. Часто их выпускает один и тот же производитель. Особенно важными применениями тепловых реле является защита электродвигателей от перегрева. Тепловое реле состоит из двухфазных биметаллических проводников (проводников с разными коэффициентами теплового расширения) – по одному на каждую фазу.

С электрической точки зрения, они являются резисторами с очень малым сопротивлением, и, таким образом, служат датчиками тока. Когда через фазы (или одну из них) протекает слишком большой ток, биметаллическая пластина изгибается и размыкает магнитные контакты, то есть контакты в цепи катушки пускателя. Подключение тепловых реле выполняется между пускателем и нагрузкой.

Все больше распространяются модульные пускатели. Это пускатели, монтируемые на DIN-рейку. Это металлическая профильная полоса, закрепляемая в шкафах на щите. Простота и легкость монтажа – исключительные. Рядом с пускателем (контактором) можно прикрепить тепловые реле, автоматы, УЗО (устройство защитного отключения), микропроцессорные контроллеры и многое другое. Модульные устройства очень легко собираются в схемы, благодаря каналам для проводов, проложенным между DIN-рейками. Монтаж выполняется зачищенными проводами необходимого сечения, обжатыми наконечниками. Наконечники вставляют в отверстия клемм приборов согласно принципиальной схеме и зажимают винтами.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
gmnu-nazarovo.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: