Лазерный диод для резки металла

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Лазерные модули 5, 10 и 15 ватт для резки и гравировки на ЧПУ

Помнится лет 10 тому назад, среди начинающих радиолюбителей было популярно делать лазеры из прожигающего диски диода DVD привода. При всей примитивности конструкции, с синим лазерным диодом удавалось получить мощность до 0,6 ватт, питая это дело от батареек. Но китайская промышленность не стоит на месте и теперь уже не фольгу на CD-диске, а дерево и даже металл стало возможным резать с помощью мощных современных лазерных модулей на 1-15 ватт. Все они предназначены для использования на ЧПУ станках (читайте подробнее тут) и питаются от 12 вольт. Естественно они могут работать и без сетевого питания – на 3-х литиевых аккумуляторах, что позволяет эти лазерные модули использовать… скажем так – не только в станках))

Но перейдём к обзору. В нём примут участие модули на 1, 5, 10 и 15 ватт. Начнём с самого младшего, который устанавливается в мини станочки лазерной гравировки.

1 Вт лазерная головка

5 Вт лазерная головка

10 Вт лазерная головка

450 нм

  • Выходная мощность: импульсная 15 Вт, средняя 8 Вт
  • Частота модуляции: TTL модулированный, 0В-off 5В-on
  • Частота ШИМ Схема подключения лазера

    Подключаются модули к источнику постоянного напряжения 12 В, различаясь только током потребления. На станке для подачи питания служит специальный разъём на плате CNC, а при необходимости можно задействовать обычный импульсный блок питания, воткнув штекер в стандартное гнездо через такой переходник (идёт в комплекте).

    TTL управление осуществляется через специальный блок, с помощью ШИМ импульсов. Схемы нет, но вот фото этой платы с деталями в хорошем качестве.

    TTL БП плата

    Какую выбрать мощность лазера

    С самой мощной из доступных, 15-ваттной головкой, удаётся легко выполнять гравировку не только на дереве, но и почти на любом типе металла (одни поддаются выжиганию лучше – другие хуже). С лазером до 5 ватт получится гравировать и резать дерево, картон, пластик, кожу. Ну а модель на 1 ватт особым результатом не удивит – только картон и фанера.

    Резка лазером – примеры

    Примечание:

    Головка будет выдавать 100% от интенсивности лазерного излучения, когда вы непосредственно подключите её к источнику питания 12 В. Не использовать более 10 минут в таком режиме, иначе лазер сгорит. Желательно чуть снизить питающее напряжение, хотя бы на 1 вольт – это существенно увеличит ресурс диода без заметного снижения мощности луча.

    Отзывы покупателей о лазерных головках

    Машинка упакована отлично +, Собрал действительно за 5 минут, даже не смотря в инструкцию +. Программное обеспечение на флешке, устанавливается элементарно, но нет на русском языке, пришлось посмотреть видео инструкцию +/ -. сам процесс гравировки как на видео, единственное на что нужно обратить внимание: простенький рисунок из папки тест на вложенном шаблоне, гравируется 10 минут (не быстро), а если что-то существенней – фото и размер со спичечный коробок более часа. Долго -. Качество гравировки, ну тут есть недочеты (пытался награвировать на ноже, ну скажем не очень получилось. И металл другой и не учел того что нож не ровный и фокусное расстояние из-за этого ушло), хотя можно их списать на мою неопытность. В целом неплохо. Поставил заслуженную 5.

    Лазер каждый день работал хуже и хуже, в итоге не гравирует на металле, продавец не отвечает, узнала у других людей что эти лазеры теряют мощность через месяц, то есть это не первый случай, никому не советую покупать эту китайщину, деньги на ветер.

    В описании рабочая зона не соответствует действительности, меньше где-то сантиметра на 2, когда режет картон то весь дым идет наружу, дышать не возможно. Подставка или сама конструкция немного не ровная, из-за чего фокусное расстояние везде получается разное. С резкой картона 1.5 мм справляется не плохо.

    Купил 8w мощности и импульсно до 15w, фанеру 2 мм простреливает быстро, доставка около 20 дней и очень долго отправляется, возможно нет в наличии но всё качественно.

    Товар соответствует требованиям по качеству. Если приспособиться, но можно качественно гравировать. Совет: 1. Даже в очках не смотреть на работающий лазер, 2. Устанавливать только на ровную поверхность, так как от толчков моторов происходит сдвиг. Жгёт не на всём, что и понятно: всего 15 ватт, фанеру 4 мм прожигает за 3-4 прохода.

    Упакован отлично. Работает хорошо, гравирует, режет. Металл пробовал гравировать на присланном образце, получилось! Сам корпус сбитый, ровный. Программное обеспечение достаточно простое, есть подробная инструкция.

    Видео использования лазера в станке ЧПУ

    Лазерный резак для резки фанеры, дерева, металла своими руками: советы по сборке

    Возможность изготовления из неиспользуемой или пришедшей в негодность техники чего-то полезного привлекает многих домашних мастеров. Одним из таких полезных устройств является лазерный резак. Имея в своем распоряжении подобный аппарат (некоторые делают его даже из обычной лазерной указки), можно выполнять декоративное оформление изделий из различных материалов.

    Читайте также:
    Мангал из пропанового баллона своими руками

    Самодельным лазерным резаком можно вырезать тонкие деревянные детали или сделать гравировку на стекле

    Какие материалы и механизмы потребуются

    Чтобы изготовить простейший лазерный резак своими руками, вам потребуются следующие материалы и технические устройства:

    • лазерная указка;
    • обычный фонарик, оснащенный аккумуляторными батарейками;
    • старый пишущий дисковод (CD/DVD-RW), оснащенный лазерным приводом (совершенно не обязательно, чтобы такой дисковод находился в рабочем состоянии);
    • паяльник;
    • набор слесарных инструментов.

    Чем выше скорость записи привода, тем мощнее получится лазерный резак

    Таким образом, можно изготовить простейшее устройство для лазерной резки, используя материалы, которые легко найти в домашней мастерской или в гараже.

    Процесс изготовления простейшего лазерного резака

    Основным рабочим элементом самодельного резака предложенной конструкции является лазерный элемент пишущего компьютерного дисковода. Выбирать именно пишущую модель дисковода следует потому, что лазер в таких устройствах отличается более высокой мощностью, позволяющей выжигать дорожки на поверхности установленного в них диска. В конструкции дисковода считывающего типа также присутствует лазерный излучатель, но его мощность, используемая лишь для подсвечивания диска, невысока.

    Извлечение лазерного модуля из привода потребует аккуратности

    Лазерный излучатель, которым оснащается пишущий дисковод, размещается на специальной каретке, способной передвигаться в двух направлениях. Чтобы снять излучатель с каретки, необходимо освободить его от большого количества крепежных элементов и разъемных устройств. Снимать их следует очень аккуратно, чтобы не повредить лазерный элемент. Кроме обычных инструментов, для извлечения красного лазерного диода (а для оснащения лазерного самодельного резака нужен именно он) потребуется паяльник, чтобы аккуратно освободить диод от имеющихся паяных соединений. Извлекая излучатель из посадочного места, следует соблюдать аккуратность и осторожность, чтобы не подвергать его сильному механическому воздействию, которое может стать причиной его выхода из строя.

    Для резака нужен светодиод с красным свечением

    Излучатель, извлеченный из пишущего компьютерного дисковода, необходимо установить вместо светодиода, которым изначально укомплектована лазерная указка. Для выполнения такой процедуры лазерную указку нужно разобрать, разделив ее корпус на две части. В верхней из них и находится светодиод, который следует извлечь и заменить на лазерный излучатель от пишущего компьютерного дисковода. Закрепляя такой излучатель в корпусе указки, можно использовать клей (важно только следить за тем, чтобы глазок излучателя располагался строго по центру отверстия, предназначенного для выхода луча).

    Для контроля мощности нужно собрать простейшую электросхему, иначе светодиод может выйти из строя

    Напряжения, которое вырабатывают источники питания в лазерной указке, недостаточно для того, чтобы обеспечить эффективность использования лазерного резака, поэтому применять их для оснащения такого устройства нецелесообразно. Для простейшего лазерного резака подойдут аккумуляторные батареи, используемые в обычном электрическом фонарике. Таким образом, совместив нижнюю часть фонарика, в которой размещаются его аккумуляторные батареи, с верхней частью лазерной указки, где уже находится излучатель от пишущего компьютерного дисковода, можно получить вполне работоспособный лазерный резак. Выполняя такое совмещение, очень важно соблюсти полярность аккумуляторных батарей, которые будут питать электроэнергией излучатель.

    Схема резака на основе лазерной указки

    Перед сборкой самодельного ручного лазерного резака предложенной конструкции из наконечника указки необходимо извлечь установленное в нем стекло, которое будет препятствовать прохождению лазерного луча. Кроме того, надо еще раз проверить правильность соединения излучателя с элементами питания, а также то, насколько точно располагается его глазок по отношению к выходному отверстию наконечника указки. После того как все элементы конструкции будут надежно соединены между собой, можно приступать к использованию резака.

    В принципе для самодельного резака этой конструкции можно использовать любой подходящий корпус

    Конечно, при помощи такого маломощного лазера не получится разрезать металлический лист, не подойдет он и для работ по дереву, но для решения несложных задач, связанных с резкой картона или тонких полимерных листов, он годится.

    Проба резака. Изолента режется как ножом по маслу

    По описанному выше алгоритму можно изготовить и более мощный лазерный резак, несколько усовершенствовав предложенную конструкцию. В частности, такое устройство необходимо дополнительно оснастить такими элементами, как:

    • конденсаторы, емкость которых составляет 100 пФ и 100 мФ;
    • резисторы с параметрами 2–5 Ом;
    • коллиматор – устройство, которое используется для того, чтобы собрать проходящие через него световые лучи в узкий пучок;
    • светодиодный фонарик со стальным корпусом.

    Конденсаторы и резисторы в конструкции такого лазерного резака необходимы для того, чтобы создать драйвер, через который электрическое питание будет поступать от аккумуляторных батарей к лазерному излучателю. Если не использовать драйвер и пустить ток на излучатель напрямую, последний может сразу выйти из строя. Несмотря на более высокую мощность, такой лазерный станок для резки фанеры, толстого пластика и тем более металла также не получится.

    Читайте также:
    Наждачный станок своими руками

    Как изготовить более мощный аппарат

    Домашних мастеров часто интересуют и более мощные лазерные станки, которые можно изготовить своими руками. Сделать лазер для резки фанеры своими руками и даже лазерный резак по металлу вполне возможно, но для этого необходимо обзавестись соответствующими комплектующими. При этом лучше сразу изготовить свой лазерный станок, который будет отличаться достойной функциональностью и работать в автоматическом режиме, управляясь внешним компьютером.

    В зависимости от того, интересует вас лазерная резка металла своими руками или вам необходим аппарат для работ по дереву и другим материалам, следует правильно подбирать основной элемент такого оборудования – лазерный излучатель, мощность которого может быть различной. Естественно, лазерная резка фанеры своими руками выполняется устройством меньшей мощности, а лазер для резки металла должен оснащаться излучателем, мощность которого составляет не менее 60 Вт.

    Для серьезного станка лучше потратиться приобрести лазерный диод нужной мощности

    Чтобы изготовить полноценный лазерный станок, в том числе и для резки металла своими руками, потребуются следующие расходные материалы и комплектующие:

    1. контроллер, который будет отвечать за связь между внешним компьютером и электронными компонентами самого устройства, тем самым обеспечивая управление его работой;
    2. электронная плата, оснащенная информационным дисплеем;
    3. лазер (его мощность выбирается в зависимости от материалов, для обработки которых будет использоваться изготавливаемый резак);
    4. шаговые двигатели, которые будут отвечать за перемещение рабочего стола устройства в двух направлениях (в качестве таких двигателей можно применять шаговые электромоторы от неиспользуемых принтеров или DVD-плееров);
    5. охлаждающее устройство для излучателя;
    6. регулятор DC-DC, который будет контролировать величину напряжения, подаваемого на электронную плату излучателя;
    7. транзисторы и электронные платы для управления шаговыми электродвигателями резака;
    8. концевые выключатели;
    9. шкивы для установки зубчатых ремней и сами ремни;
    10. корпус, размер которого позволяет разместить в нем все элементы собираемой конструкции;
    11. шарикоподшипники различного диаметра;
    12. болты, гайки, винты, стяжки и хомуты;
    13. деревянные доски, из которых будет изготовлена рабочая рама резака;
    14. металлические стержни диаметром 10 мм, которые будут использоваться в качестве направляющих элементов;
    15. компьютер и USB-кабель, при помощи которого он будет соединяться с контроллером резака;
    16. набор слесарных инструментов.

    Компоненты электронной начинки можно подобрать по отдельности или приобрести набор из комплектующих для станка ЧПУ

    Если лазерный станок вы планируете использовать для работ по металлу своими руками, то его конструкция должна быть усиленной, чтобы выдерживать вес обрабатываемого металлического листа.

    Наличие компьютера и контроллера в конструкции такого устройства позволяет использовать его не только в качестве лазерного резака, но и как гравировальный аппарат. С помощью данного оборудования, работа которого управляется специальной компьютерной программой, можно с высокой точностью и детализацией наносить сложнейшие узоры и надписи на поверхность обрабатываемого изделия. Соответствующую программу можно найти в свободном доступе в интернете.

    По своей конструкции лазерный станок, который можно изготовить своими руками, представляет собой устройство челночного типа. Его подвижные и направляющие элементы отвечают за перемещение рабочей головки по осям X и Y. За ось Z принимается глубина, на которую выполняется резка обрабатываемого материала. За перемещение рабочей головки лазерного резака представленной конструкции, как уже говорилось выше, отвечают шаговые электродвигатели, которые фиксируются на неподвижных частях рамы устройства и соединяются с подвижными элементами при помощи зубчатых ремней.

    Подвижная каретка самодельного резка

    Очень важным этапом изготовления лазерного станка своими руками является его настройка после окончательной сборки. Настройке и регулировке подвергаются как элементы кинематической схемы резака, так и его лазерная головка. Если с первыми проблем обычно не возникает, то юстировка лазерной головки представляет собой достаточно сложный процесс, правила выполнения которого следует хорошо изучить.

    В заключение предлагаем вашему вниманию пару видеороликов о сборке ещё одного варианта лазерного станка из двух DVD-приводов.

    Из чего можно сделать лазерный резак по металлу

    Изготовить лазер для резки металла своими руками. Мощность такого устройства будет небольшой, но есть способы увеличить ее за счет подручных приспособлений.

    Лазерный резак — уникальное приспособление, которое полезно иметь в гараже каждого современного мужчины. Изготовить лазер для резки металла своими руками — несложно, главное соблюдать простые правила. Мощность такого устройства будет небольшой, но есть способы увеличить ее за счет подручных приспособлений. Функционала производственной машины, которая без приукрашивания — может все, самоделкой не достичь. Но для бытовых дел, этот агрегат подойдет очень кстати. Давайте рассмотрим, как его соорудить.

    Читайте также:
    Мини шлифовальная машинка по дереву

    Как сделать лазерный резак в гараже

    Все гениально просто, поэтому для создания такого оборудования, которое способно вырезать красивейшие узоры в прочных сталях, можно сделать из обычных подручных материалов. Для изготовления обязательно потребуется старая лазерная указка. Помимо этого, следует запастись:

    1. Фонариком, работающим на аккумуляторных батарейках.
    2. Старым DVD-ROM, из которого нам потребуется извлечь матрицу с лазерным приводом.
    3. Паяльник и набор отверток для закручивания.

    Первым шагом будет являться разборка привода старого дисковода компьютера. Оттуда нам следует извлечь прибор. Будьте аккуратны, чтобы не повредить само устройство. Привод дисковода должен быть пишущим, а не просто читающим, дело в строении матрицы устройства. Сейчас в подробности вдаваться не будем, но просто используйте современные нерабочие модели.

    После этого, вам обязательно нужно будет извлечь красненький диод, который прожигает диск во время записи на него информации. Просто взяли паяльник и распаяли крепления этого диода. Только ни в коем случае не бросайте его. Это чувствительный элемент, который при повреждениях может быстро испортиться.

    При сборке самого лазерного резака следует учесть следующее:

    1. Куда лучше установить красный диод
    2. Каким образом будут запитываться элементы всей системы
    3. Как будут распределяться потоки электрического тока в детали.

    Помните! На диод, который будет выполнять прожиг, требуется намного больше электричества, нежели на элементы указки.

    Для этого вам потребуется фонарик и аккумуляторные батарейки, которые запитают лазерный резак. Благодаря фонарику у вас получится удобная и компактная деталь, не занимающая много места в быту. Ключевым моментом оборудования такого корпуса является правильно подобрать полярность. Удаляется защитное стекло с бывшего фонарика, чтобы оно не являлось преградой для направленного луча.

    Последующим действием является запитка самого диода. Для этого вам необходимо подключить его к зарядке аккумуляторной батареи, соблюдая полярность. В завершении проконтролировать:

    • Надежность фиксации устройства в зажимах и фиксаторах;
    • Полярность устройства;
    • Направленность луча.

    Неточности докрутить, а когда все готово можно поздравить себя с успешной завершенной работой. Резак готов к использованию. Единственное, что нужно помнить — его мощность намного меньше, чем мощность производственного аналога, поэтому слишком толстый металл ему не под силу.

    Осторожно! Мощности прибора достаточно, чтобы навредить вашему здоровью, поэтому будьте осторожны во время управления и старайтесь не запихивать пальцы под луч.

    Усиление самодельной установки

    • 2 «кондера» на 100 пФ и мФ;
    • Сопротивление на 2-5 Ом;
    • 3 аккумуляторные батарейки;
    • Коллиматор.

    Ту установку, которую вы уже собрали можно усилить, чтобы в быту получить достаточно мощности для любых работ с металлом. При работе над усилением помните, что включить напрямую в розетку ваш резак будет для него самоубийством, поэтому следует позаботиться о том, чтобы ток сперва попадал на конденсаторы, после чего отдавался батарейкам.

    При помощи добавления резисторов вы можете повысить мощность вашей установки. Чтобы еще больше увеличить КПД вашего устройства, используйте коллиматор, который монтируется для скапливания луча. Продается такая модель в любом магазине для электрика, а стоимость колеблется от 200 до 600 рублей, поэтому купить ее не сложно.

    Дальше схема сборки выполняется так же, как было рассмотрено выше, только следует вокруг диода накрутить алюминиевую проволоку, чтобы убрать статичность. После этого вам предстоит измерить силу тока, для чего берется мультиметр. Оба конца прибора подключаются на оставшийся диод и измеряются. В зависимости от нужд вы можете урегулировать показатели от 300 мА до 500 мА.

    После того, как калибровка тока выполнена, можно переходить к эстетическому декорированию вашего резака. Для корпуса вполне сойдет старый стальной фонарик на светодиодах. Он компактный и умещается в кармане. Чтобы линза не пачкалась, обязательно обзаведитесь чехлом.

    Хранить готовый резак следует в коробке или чехле. Туда не должна попадать пыль или влага, иначе устройство будет выведено из строя.

    В чем разница между готовыми моделями

    1. Благодаря созданию направленного лазерного луча происходит воздействие на металл
    2. Мощное излучение заставляет материал испаряться и выходить под силой потока.
    3. В результате благодаря малому диаметру лазерного луча получается высококачественный срез заготовки.

    Глубина врезания будет зависеть от мощности комплектующих. Если заводские модели оборудуются высококлассными материалами, которые обеспечивают достаточный показатель углубления. То самодельные модели способны справиться врезаться на 1-3 см.

    Благодаря таким лазерным установкам можно сделать уникальные узоры в заборе частного дома, комплектующие для декорирования ворот или ограждений. Существует всего 3 вида резаков:

    1. Твердотельные. Принцип работы завязан на использовании специальных сортов стекла или кристалликов светодиодного оборудования. Это недорогие производственные установки, которые используются на производстве.
    2. Волоконные. Благодаря использованию оптического волокна можно получить мощный поток и достаточную глубину врезания. Они являются аналогами твердотельных моделей, но благодаря своим возможностям и характеристикам по производительности лучше их. Но и дороже.
    3. Газовые. Из названия понятно, что для работы используется газ. Это может быть азот, гелий, углекислый газ. КПД таких устройств на 20% выше, чем у всех предыдущих. Их используют для резки, сварки полимеров, резины, стекла и даже металла с очень большим уровнем теплопроводности.
    Читайте также:
    Лучшие электроды для инверторной сварки

    В быту без особых затрат можно получить только твердотельный лазерный резак, но его мощности при грамотном усилении, которое было разобрано выше, хватает для выполнения бытовых работ. Теперь у вас есть знания относительно изготовления такого устройства, а дальше только действовать и пробовать.

    А у вас есть опыт в разработке лазерного резака по металлу своими руками? Поделитесь с читателями, оставив под этой статьей комментарий!

    Возможности лазерной резки: какие материалы можно резать лазером?

    Самодельная лазерная установка

    Лазерным устройствам технари всегда уделяли тщательное внимание. Сегодня многие люди интересуются, а самому, своими руками изготовить хороший лазер с целью использования его по назначению. Из статьи вы узнаете, как сделать лазерную цветомузыку (laser soundlights).

    В чем преимущества волоконного лазера?

    Минимальная область фокусировки

    Диаметр фокуса луча волоконных лазеров значительно меньше, чем у лазеров на CO2 и кристаллах. Может возникнуть вопрос: «Что же хорошего в том, что он меньше? Разве больше — не значит лучше?». В данном случае больше не значит лучше.

    У минимальной области фокусировки есть два серьезных преимущества в плане практического результата:

    • Маленький диаметр нагрева позволяет делать рез меньшей ширины и отверстия — меньшего диаметра. Это важно не во всех случаях — например, при раскрое заготовок без внутренних отверстий вы можете вовсе не заметить разницы. Но при создании разверток для корпусов приборов это играет роль — развязывает руки конструкторам и позволяет делать вырезы, которые раньше были невозможны.
    • На маленьком пятачке поверхности, который обрабатывается волоконным лазером, концентрируется та же энергия, которая у газового лазера распределялась по более широкому участку. Это дает более быстрый нагрев, и благодаря этому лазерная резка при использовании волоконной технологии оказывается эффективней.

    Посмотрите видео из нашего цеха:

    Видео — производство металлического корпуса под заказ

    Максимальный КПД среди лазеров

    В том числе и благодаря особенной области фокусировки коэффициент полезного действия питания такого лазера доходит до 70%. Это очень высокий показатель для лазеров — у предшественников волоконного лазера он был примерно в два раза ниже.

    Простота в эксплуатации

    Здесь может возникнуть вопрос: «А какая, собственно, разница мне как заказчику, насколько вам как исполнителю просто эксплуатировать этот лазер?». Но дело в том, что итоговая стоимость лазерной резки не берется с потолка, а формируется из затрат на нее. Простота в использовании волоконной резки — это:

    • отсутствие сложной наладки, чистки и точной настройки, как у прошлых поколений лазеров — а на всё это тратились бы человекочасы квалифицированного персонала;
    • малая теплоотдача, допускающая воздушное охлаждение — а это отсутствие затрат на сложные охладительные системы;
    • отсутствие особых требований по чистоте воздуха и влажности к помещению, в котором проходит резка — значит, тратиться не придется и на это.

    В результате заказчик, который платит за лазерную резку волоконным лазером, платит именно за лазерную резку, а не за сложную систему кондиционирования и дорогой труд настройщиков.

    А вот пример корпуса производства «Металл‑Кейс»:

    Корпус для прибора беспроводной передачи данных (7 фото)

    Увеличенный срок службы

    Замена изнашивающихся элементов лазерной установки — еще одна расходная статья, которая косвенно ложится на плечи заказчиков лазерной резки. И по этому показателю волоконный лазер также оказывается более экономичным, чем его предшественники.

    Вдумайтесь — среднее время наработки на отказ у волокна лазеров составляет около 100 000 часов непрерывной работы. А, например, дорогие диоды накачки лазеров на основе кристаллов служат от 8 000 до 15 000 часов.



    История лазерных диодов

    Полупроводниковые или диодные лазеры очень важны для многих применений. В них используются не уровни, а энергетические состояния нелокализованных электронов. В твердых телах энергетические уровни электронов группируются в зоны. При температуре абсолютного нуля в полупроводниках, все имеющиеся уровни заполняют одну зону (валентная зона), а последующие свободные уровни группируются в другой зоне (зона проводимости), которая совершенно не заполнена и отделена от валентной зоны некоторым промежутком энергий, для которых нет состояний. Этот интервал называется запрещенной зоной (энергетической щелью). В этих условиях материал не может проводить ток и является изолятором.

    Когда температура увеличивается и если зона проводимости расположена от валентной зоны не слишком высоко, термическое возбуждение достаточно, чтобы некоторые из электронов перескочили в зону проводимости. Поскольку там все уровни пустые, они способны обеспечить электрический ток. Однако из-за того, что их мало, величина тока невелика. Соответственно материал становится проводящим с плохой проводимостью, т.е. полупроводником. Электроны, которые способны поддерживать ток в зоне проводимости, оставляют вакантными состояния в валентной зоне. Эти вакантные состояния, которые называются дырками, ведут себя как положительно заряженные частицы и также участвуют в проводимости. В чистом полупроводнике термическое возбуждение производит электроны в зоне проводимости и дырки в валентной зоне в равных количествах.

    Материал по теме: Что такое реле времени

    Электроны и дырки, способные поддерживать ток, называются носителями. Если по какой-либо причине в зоне проводимости оказывается больше электронов, чем следует по статистике Максвелла-Больцмана, избыток электронов падает на вакантные энергетические уровни валентной зоны и таким образом возвращается в валентную зону и там исчезает дырка. То же самое происходит, если, наоборот, больше дырок присутствует в валентной зоне, чем допускается данной температурой. Этот процесс называется рекомбинацией двух носителей. Он происходит, давая энергию, соответствующую величине интервала между двумя зонами, которая проявляется либо в виде механических колебаний решетки, либо в виде испускания фотона. Переход называется излучательным, а энергия фотона соответствует разности энергий уровней в валентной зоне и в зоне проводимости, т.е., грубо говоря, равной энергии запрещенной зоны.

    Читайте также:
    Мини асфальтовый завод своими руками

    Некоторые полупроводники не вполне чистые. Примеси образуют энергетические уровни электронов внутри зон. Если эти дополнительные уровни находятся вблизи дна зоны проводимости, термическое возбуждение заставляет их электроны перепрыгнуть в зону проводимости, где они способны поддерживать электрический ток. Уровни примеси остаются пустыми и, поскольку они фиксированы в материале, не способны поддерживать ток. В этом случае единственными носителями тока являются электроны в зоне проводимости, и полупроводник называется допированным n-типом («n» напоминает, что проводимость обеспечивается отрицательными зарядами).

    Будет интересно➡ Чем стабисторы отличаются от стабилитронов?

    Наоборот, если уровни примеси располагаются вблизи верха валентной зоны, термическое возбуждение заставляет электроны из валентной зоны перепрыгнуть на эти примесные уровни, образуя тем самым дырки, которые способны поддерживать ток. Тогда полупроводник называется p-типом («p» — для положительного заряда). Возможно так допировать полупроводник, что получаются области как p-типа, так и n-типа с узкой промежуточной областью между ними. Этот промежуток между различными областями называется p-n-переходом. Если заставить ток протекать через этот переход, делая n область отрицательной и p область положительной, электроны инжектируются в этот переход. На основе этого свойства были изобретены в конце 1940-х гг. транзисторы, вызвавшие революцию в мире электроники.


    Лазерные диоды с подключениями.


    Выбор мощности для лазерного раскроя различных материалов

    Это один из ключевых моментов при составлении программы лазерной резки. Лазерный луч должен двигаться не слишком быстро — чтобы материал успевал качественно разрезаться — но и не слишком медленно — чтобы установка не работала впустую и не тратила лишней энергии.

    Требуемая мощность сильно разнится в зависимости от выбранного материала.

    Для обработки металлов требуется относительно мощный лазер. Например, черная сталь толщиной 15 миллиметров. Лазерная установка мощностью 2,5 киловатта будет резать ее со скоростью от 16 до 20 миллиметров в секунду.

    А вот дерево, его производные, пластик и оргстекло — менее плотные материалы, поэтому их раскрой лазером проходит легче и быстрее. Например, оргстекло с той же самой толщиной 15 миллиметров. Для его раскроя потребуется станок с мощностью в 5 раз меньше — всего лишь 0,5 киловатта. И при этом раскрой еще и будет идти быстрее, чем раскрой металла на более мощном станке.

    Принцип работы

    Лазерный диод является дальнейшим развитием обычного светоизлучающего диода (или светодиода, или LED). Термин «laser» на самом деле является акронимом, несмотря на то, что он часто пишется строчными буквами. «Laser» означает «Light Amplification by Stimulated Emission of Radiation» (усиление света посредством вынужденного излучения) и относится к другому странному квантовому процессу, при котором характерный свет, излучаемый электронами, спускающимися в материале с высокоуровневых на низкоуровневые энергетические состояния, стимулирует другие электроны делать сходные «прыжки», результатом чего является синхронизированный вывод света из материала. Эта синхронизация распространяется на фазу излучаемого света, так что все световые волны, излучаемые «лазерным» материалом, имеют не только одинаковую частоту (цвет), но и одинаковую фазу, так что они усиливают друг друга и способны распространяться по очень узко ограниченному, недисперсионному лучу. Именно поэтому лазерный свет остается настолько заметно сфокусированным на больших расстояниях: каждая световая волна находится очень близко от другой.

    Белый свет состоит из множества волн с разными длинами. Свет монохромного светодиода с одной длиной волны. Фазово-когерентный лазерный свет. Лампы производят «белый» (из смешанных частот, или из смешанных цветов) свет, как на рисунке выше. Обычные светодиоды производят монохроматический свет: одна частота (цвет), но разные фазы, что приводит к аналогичной дисперсии на рисунке выше.

    Читайте также:
    Можно ли спаять алюминий с медью

    Лазерные светодиоды производят когерентный свет: свет и монохроматический (одноцветный) и монофазный (однофазный), что приводит к точному ограничению луча, как на рисунке выше. В современно мире лазерный свет находит широкое применение: от геодезии, где прямой и недисперсионный световой луч очень полезен для точного прицеливания измерительных маркеров, до считывания и записи оптических дисков, где только узкий сфокусированный лазерный луч способен нацеливаться на микроскопические «ямы» на поверхности диска, содержащие двоичные единицы и нули цифровой информации.


    Таблица доступных длин волн и мощностей лазерных диодов.

    Для некоторых лазерных светодиодов требуются специальные мощные «импульсные» схемы для подачи больших величин напряжения и тока во время коротких вспышек. Другие лазерные светодиоды при меньшей мощности могут работать непрерывно. В непрерывном лазере лазерное воздействие происходит только в пределах определенного диапазона токов через диод, что требует какой-то схемы регулирования тока. С возрастом лазерных светодиодов потребляемая ими мощность может меняться (для обеспечения такой же выходной мощности может потребоваться больший ток), но следует помнить, что маломощные светодиоды, как и обычные светодиоды, являются довольно долговечными устройствами с типовым сроком службы в десятки тысяч часов.


    Три одинаковых лазерных диода с разных сторон.

    Несколько десятилетий яркий лазерный свет украшал концерты, спортивные мероприятия и прочие шоу. Между тем за картинкой зрелищ всегда оставались технологические ограничения. Лазерный луч обладал способностями освещать только одну точку за момент времени и никогда в белом свете. Более того, световые узоры, созданные лазерным лучом, изобиловали постоянно меняющимся и несколько жутким феноменом интерференционной картинки. Однако технологии сделали своё дело. Недавние достижения в области полупроводниковых лазеров открыли более широкий спектр применения. Усовершенствованный лазерный диод теперь доступен и для точной подсветки фасадов зданий и для автомобильных фар дальнего света.

    Будет интересно➡ Как работает диод с барьером Шоттки

    Технология лазерной резки металла

    При использовании лазерной резки обрабатываемый металл подвергается воздействию эффектов отражения и поглощения лазерного излучения.

    Изменение размеров и формы вещества при лазерной обработке возможно благодаря действию двух эффектов излучения: плавления и испарения.

    Рассмотрим процесс лазерной резки металла подробнее:

    1. Лазерный луч воздействует на металл в определенной точке.
    2. Сначала вещество нагревается до определенной температуры, затем начинает плавиться.
    3. На границе плавления возникает углубление.
    4. Воздействие энергии излучения лазера приводит к второй стадии процесса – кипению и испарению металлического вещества.

    На практике эффект испарения возможен только при обработке тонкого металла. Для металлов с большим значением плотности лазерная резка выполняется плавлением с помощью газа, выполняющего вспомогательную роль, для удаления остатков металла. В качестве таких газов могут использоваться азот, кислород, инертный газ или воздух. Лазерная резка металла, фото которой представлено ниже, с применением технологии вспомогательного газа будет называться газолазерной резкой.

    Подробная информация о плазменной резке металла. О сварочной проволоке можно прочитать здесь.

    СО2 лазер (углекислый) для раскроя металла

    Углекислые лазеры обладают характеристиками, делающими их идеальными для раскроя в промышленности. Первое — длинные инфракрасные волны, идеальные для нагрева. Второе — высокая эффективность (от 30%). Использование углекислого газа делает срез более гладким (если сравнивать с оборудованием со стекловолокном). Расширяется сфера применения, инвестиции быстро окупаются.

    Недостаток СО2 лазер для резки металла – необходимость в оптических зеркалах, оснащенных сапфировыми элементами и золотом. Кроме того, этот вид оборудования требует высокого электрического разряда на этапе формирования луча. Для резки металла (нержавеющей стали, алюминия) толщиной 2 мм достаточно мощности 160 Вт, если применяется лазер этого типа. При повышении мощности до 200 Вт можно резать листы толщиной 3 мм.

    Применение лазерной резки металла

    Благодаря своим преимуществам и использованию современного точного оборудования, лазерная резка металла применяется для создания:

    1. Деталей машиностроительной техники.
    2. Декоративных подставок, стеллажей, полок и оборудования для торговой промышленности.
    3. Элементов котлов, емкостей, дымоходов и печей.
    4. Деталей дверей и ворот, кованных ограждений.
    5. Индивидуального дизайна шкафов и корпусов.
    6. Оригинальных вывесок, трафаретов, букв и шаблонов.

    Применение лазерной резки имеет множество преимуществ перед другими видами обработки металла. Поэтому все больше предприятий используют в своем производстве именно лазерную обработку металла.

    Выбор мощность лазера для резки металла в зависимости от материала

    Это одна из самых современных технологий, используемых не только на производстве, но и в небольших мастерских. Данный способ при правильном подборе вида оборудования подходит практически для всех металлов, позволяет делать обычную и художественную (фигурную) резку. Чтобы добиться хороших результатов, необходимо ориентироваться в технологиях и принципах работы этого оборудования.

    Читайте также:
    Металлоизделия своими руками

    1. Мощность лазера для раскроя металлических заготовок различной толщины
    2. Лазерный диод для резки металла
    3. СО2 лазер (углекислый) для раскроя металла
    4. Длина волны лазера для резки металла

    Мощность лазера для раскроя металлических заготовок различной толщины

    Резка лучом лазера термическая, дает возможность добиться точности, почти полностью исключающей необходимость в дальнейшей обработке. Чтобы повысить эффективность, применяются различные газы: кислород, углекислый газ, азот, водород, гелий, аргон. Выбор зависит от вида материала, толщины заготовки, планов по поводу последующей обработки. Если для раскроя требуется очень высокая температура, используется кислород. Для работы с цирконием или титаном подходит только аргон.

    Любой лазерное оборудование состоит из:

    • механизма (системы), обеспечивающего подачу энергии;
    • тела, генерирующего луч (твердого, волоконного, в виде смеси газов);
    • зеркал (резонатора).

    В твердотельное лазерное оборудование размещается диод и стерженек, изготовленный из рубина, неодима или граната. В волоконных лазерах элементом, генерирующим луч, (иногда и резонатором) служит оптическое волокно. В газовом оборудовании используются газы или их смеси. Мощность и сфера применения полностью зависят от вида оборудования:

    • твердотелые (для латуни, меди, алюминия и сплавов из него) – 1-6 кВт;

    • газовые – до 20 кВт;

    • СО2-лазеры (для любых тонких металлических заготовок) – 600-8000 кВт;
    • газодимамические – от 150 кВт.

    Для резки металла мощность лазера 450-500 Вт (кроме цветных металлов, для которых требуется от 1 кВт). Наиболее эффективен этот способ при толщине заготовок, толщина которых не превышает 6 мм. При 20-40 мм лазерное оборудование применяется редко. Для металла большой толщины лазерная резка (от 40 мм) почти не встречается.

    Зависимость мощности от толщины заготовки

    Толщина заготовки (мм)

    Сталь (легированная, углеродистая)

    Для обработки легированной и углеродистой стали в качестве вспомогательного элемента используется кислород, для нержавеющей стали – азот с давлением до 20 атмосфер. Цветные металлы и алюминий отличаются высокой теплопроводностью и низким уровнем поглощения лазерного луча. Для раскроя этих материалов используется твердотелый лазер, работающий в режиме импульсов.

    Важно! Для резки металла толщиной 1мм выбор мощности лазера зависит от вида материала. Для стали достаточно 100 Вт, для титана необходимо 600 Вт.

    Лазерный диод для резки металла

    Лазерный диод для резки металла – полупроводниковый лазер, сконструированный по принципу p-n гомоструктурного диода. Полупроводником служит пластина, верхний слой которой создает n-области (отрицательную), нижний — p-область (положительную). Переход p-n сравнительно большой и плоский. Торцы по бокам служат резонаторами. Фотон, который движется перпендикулярно, отражается от торцов несколько раз, только потом сможет выйти.

    В процессе прохода вдоль торцов создаются новые фотоны, излучение усиливается, начинается генерация луча. В момент выхода он сильно расходится, поэтому собирается линзами. Лазерные диоды для резки металла с большой мощностью (10 микрометров) дополнительно излучают углекислый газ (CO2).

    Важно! Оборудование этого типа отличается повышенной производительностью, сравнительно низкой стоимостью

    СО2 лазер (углекислый) для раскроя металла

    Углекислые лазеры обладают характеристиками, делающими их идеальными для раскроя в промышленности. Первое — длинные инфракрасные волны, идеальные для нагрева. Второе — высокая эффективность (от 30%). Использование углекислого газа делает срез более гладким (если сравнивать с оборудованием со стекловолокном). Расширяется сфера применения, инвестиции быстро окупаются.

    Недостаток СО2 лазер для резки металла – необходимость в оптических зеркалах, оснащенных сапфировыми элементами и золотом. Кроме того, этот вид оборудования требует высокого электрического разряда на этапе формирования луча. Для резки металла (нержавеющей стали, алюминия) толщиной 2 мм достаточно мощности 160 Вт, если применяется лазер этого типа. При повышении мощности до 200 Вт можно резать листы толщиной 3 мм.

    Активная среда состоит из смеси углекислого газа, гелия, неона. В зависимости от того, какая для резки металла нужна мощность лазера, может добавляться ксенон или водород. Пропорции тоже меняются, исходя из требований к свойствам луча, но объем СО2 не превышает 20%. На рынке доступно оборудование этого вида с мощностью 1 кВт, 3-5 кВт и 10 кВт.

    Длина волны лазера для резки металла

    На поглощение материалом лазерного луча существенно влияют качества волны: длина и спектр. Длина волны лазера для резки металла полностью зависит от вида материала. Если рассматривать волоконный лазер, то один его узел создает луч с волной 1 мкм (миллимикрон). Если требуется более длинный луч, используется сумматор, объединяющий лучи нескольких модулей. Показатели твердотелых моделей отличаются мало – длина волны так же 1 мкм. Эти виды лазеров являются идеальным вариантом для резки практически всех видов металлов (даже благородных). Для резки металла (нержавейки) 20 мм мощность волоконного лазера – от 2 кВт.

    Читайте также:
    Крупомолка своими руками

    В углекислых лазерах длина волны достигает 10,6 мкм, что создает более высокую плотность на обрабатываемой поверхности. Этот вид оборудования применяется для раскроя стекла, древесины, стеклопластика, демонстрируя высокое качество резки даже при большой толщине.

    При выборе оборудования мало изучить технические характеристики: тип излучателя, мощность, длину волны, точность и качество реза. Важно точно определить требования конкретного производства. Мощность лазера для резки металла (например, нержавейки) толщиной 3 мм не может быть ниже 500 Вт. В противном случае снизится производительность, материал будет перегреваться. На первый взгляд может подойти СО2-лазер требуемой мощности. Но в данном случае необходимо учесть длину волны, которая не совсем подходит для металлических заготовок.

    Совет! Чтобы не ошибиться, перед покупкой необходимо все точно рассчитать или посоветоваться с квалифицированным специалистом.

    Как выбрать мощность излучателя лазерного станка по металлу

    Выбери свой станок

    Лазерный станок WATTSAN NC-С1612

    Лазерный станок по металлу WATTSAN 1325 BASIC

    Лазерный станок по металлу WATTSAN 1325 TABLECHANGE

    Лазерный станок по металлу WATTSAN 1530 BASIC

    Лазерный станок по металлу WATTSAN 1530 TABLECHANGE

    Лазерный станок по металлу для резки труб WATTSAN 1530 ROTATORY

    Лазерный станок по металлу WATTSAN 1530 CABINE

    Лазерный станок для резки труб WATTSAN 1530 ROTATORY CABINE

    Лазерный станок по металлу WATTSAN 1530 TABLECHANGE CABINE

    Лазерный станок по металлу WATTSAN 1530 ROTATORY TABLECHANGE

    Лазерный станок для раскроя металлических труб и профилей WATTSAN RD

    Современные лазерные станки для резки и обработки металлов комплектуются твёрдотельными иттербиевыми лазерными излучателями оптоволоконного типа различных брендов.

    Какие факторы учитываются при выборе излучателя для станка

    Компания Wattsan комплектует свои лазерные металлорезы продукцией, наиболее востребованной рынком, выпуск которой налажен производителями: IPG, MAX Photonics, Raycus.

    Диапазон мощности упомянутых излучателей достаточно широк, 0.35-25.0 кВт. Заявленные изготовителем сроки службы изделий превышают 5 лет. Изделия отличаются существенной эффективностью и надёжностью, а КПД (соотношение энергии потребляемой и её результирующего значения) может достигать 30, а у отдельных моделей, 50%.

    У станков линейки Wattsan просматривается прямая зависимость толщины рамы и мощности установленных на них излучателей:

    • Оборудование с рамой, толщина которой не превышает (8.0-10.0) мм, чаще всего, получает излучатели, мощность которых не превышает 2кВт;
    • Оборудование с более мощными (10.0-12.0) мм рамами комплектуется излучателями, мощность которых задаётся диапазоном (1.5-6.0) кВт;
    • Самые прочные рамы, толщина которых составляет (12.0-16.0) мм получают излучатели с N≥4кВт.

    Станки «Ваттсан» спроектированы с учётом работы на максимально доступных скоростях с излучателями до 6 кВт (включительно). Даже когда в качестве заготовки выступает тонколистовой металл.

    Взаимосвязь таких параметров оборудования, как корпус и максимальные разрешённые скорости, затронута в специальной статье и подробно рассмотрена в данном видео.

    Практика показывает, что подавляющее большинство материалов заготовок, имеющих различную толщину, может качественно обрабатываться волоконным лазером подобной мощности. Поэтому более «крутой» станок приобретать экономически нецелесообразно. Самый большой процент приобретённых станков имеет излучатели мощностью один-два киловатта.

    Определяемся с выбором требуемой мощности

    Для взвешенного принятия решения следует выполнить небольшой сравнительный анализ возможностей излучателей различной мощности. Пусть это будут устройства: 0.5Вт, 1.5Вт, 3.0Вт, 6.0Вт.

    1. Лазер мощностью 0.5кВт способен резать металлический лист толщиной 1 мм, выполняя данную работу на скорости порядка 12 м/мин.

    Но предельная толщина заготовки, для подобного устройства, составляет 3 мм. При этом скорость реза упадёт до 0.7 м/мин.

    1. Более мощный излучатель в полтора киловатта с миллиметровым листом справится значительно быстрее.

    Обработка возможна на скоростях ≤26 м/мин. Заготовку толщиной в 3 мм он качественно режет, перемещаясь со скоростью 4 м/мин. Максимально доступной толщиной для этого устройства является 6 мм. Скорость реза упадёт, в данном случае, до 1 м/мин.

    1. Трёх киловатт достаточно, чтобы резать миллиметровую заготовку на скоростях до 34 м/мин.

    С листом в 3 мм подобный станок работает, перемещаясь со скоростью 8.5 м/мин. Толщина 6 мм поддаётся сложнее. Скорость падает до 3 м/мин. Максимально возможная для обработки толщина возрастает до 12 мм. а скорость реза падает до 0.5 м/мин.

    1. Шести киловаттный излучатель является безусловным лидером «скоростных режимов»

    Лист в 1 мм режется на скоростях, которые могут достигать 41 м/мин. 3мм обрабатывается с перемещением на (15-16) м/мин. Толщина 6 мм обрабатывается медленнее, всего 5 м/мин. А предельная толщина заготовки в 16 мм, 0.6 м/мин.

    Следует иметь в виду, что скорость обработки напрямую зависит не только от толщины заготовки, но и от материала, из которого она изготовлена. А также газа, применяемого в процессе работы.

    • излучатель мощностью в 500Вт, выполняет рез листа нержавеющей стали толщиной 1 мм, перемещаясь с V≤12 м/мин;
    • этот же лазер прорежет лист углеродистой стали аналогичной толщины (с кислородом) при V≤8 м/мин;
    • если предстоит обработка миллиметрового листа меди, алюминия (азот) на этом же станке, скорость упадёт до 5 м/мин.
    Читайте также:
    Модуль деформации стали

    Ещё одно парное сравнение характеристик, которое рекомендуется оценить: размер обрабатываемой заготовки и её толщина. Чтобы выйти на максимальную скорость реза, станку необходимо определённое время и свободное пространство.

    Именно этим объясняется практически незаметная разница в работе 3.0 кВт и 1.5 кВт волоконного лазера при изготовлении средних и мелких деталей из тонколистовой заготовки. Оборудование не успевает выйти на максимально доступный скоростной режим. Положение кардинально меняется, когда рез выполняется на длинной большой заготовке. В этом случае ощутимая разница видна даже при работе с тонколистовыми металлами. А, при увеличении толщины обрабатываемого материала, различие становится колоссальным. Эту толщину предварительно следует пробить.

    Зная соотношение между мощностью и скоростью реза и тем, какие предельные толщины может брать излучатель, можно определиться с тем какой выбор будет для вас оптимальным. Потому что иногда взять более мощный излучатель выгоднее так как он будет работать быстрее.

    Несмотря на то, что для решения большинства задач достаточно 6 кВт, компания Lasercut готова изготовить станок с излучателем до 25 кВт.

    Но здесь стоит отметить, что для подобного оборудования нужна специальная усиленная станина. Представьте, какие толщины такой станок будет брать. Соответственно нужно, чтобы он выдерживал этот материал.

    Если вы из тех редких людей, которым нужно такое специфическое оборудование, обращайтесь по любому из контактов, указанных на сайте.

    Защита волоконного лазера от отражённых лучей

    Важно понимать, что отдельные металлы представляют определённую опасность для лазера, которым их обрабатывают. Это обусловлено свойственным им значительным коэффициентам отражения.

    Достоинства продукции IPG заключается в том, что в ней конструктивно предусмотрена защита волоконных излучателей от возникающих отражённых лучей.

    Лазеры данного бренда предлагаются в двух вариантах исполнения защиты:

    • LK – имеют пассивную систему, датчики которой ловят переотражения и информируют оператора о выявленной опасности;
    • LS – активная система. Позволяет нивелировать выявленные опасные отражения. Прерывать работу для этого не придётся.

    Станки в исполнении второго типа являются лучшим решением для обработки заготовок из таких материалов, как алюминий, латунь, зеркальная нержавейка, медь.

    Ещё одним бесспорным преимуществом продукции IPG является лучший Гауссов пучок, что обеспечивает более стабильный рез. Однако на толщину прорезаемых заготовок и скорость резки это не влияет.

    Перспективы рынка

    Аналитики компании выявили интересную закономерность. Большая часть наших клиентов осуществляет замену имеющихся лазерных излучателей на более мощные. Сегодняшний рынок, усиливающаяся конкуренция требуют повышенных скоростей и большей мощности. Поэтому решение приобрести сегодня лазеры, мощность которых меньше 1 кВт, дальновидным назвать нельзя.

    Гарантии на оборудование

    Практика подтверждает бесспорное мировое лидерство бренда IPG в сегменте изготовления лазерных излучателей любых типов. этому производителю принадлежит внушительное количество запатентованных технологий.

    Это единственный производитель, лазеры которого эксплуатируются свыше десяти лет. Бренд фактически подтвердил заявленную долговечность собственной продукции.

    Ещё одним существенным плюсом выбора именно данной продукции, является наличие в России (Фрязино, Московская область) собственной сервисной службы, выполняющей комплексный ремонт излучателей этого бренда. Для сравнения, для восстановления излучателя «Райкус», его потребуется отправить в Китай.

    Lasercut даёт годовую гарантию на реализуемые станки. Любая проблема, возникающая у их пользователей, будет оперативно решена нашими специалистами.

    Компания ведёт любую сделку до её логического конца. Наши контакты с потенциальным заказчиком начинаются с предварительных бесплатных консультаций по любым вопросам, касающимся нашего оборудования и лазерных станков по металлу в целом.

    Мы помогаем с выбором, доставляет приобретённые станки и запасные части к ним, выполняем установку и пусконаладочные работы. При необходимости, обучим персонал заказчика. в течение трёх рабочих дней ваши будущие операторы получат информацию о конструкции станка, основных моментах его эксплуатации, обслуживания. Наши сотрудники научат их подбирать требуемые настройки с учётом толщины и марки материала. Продемонстрируют порядок и особенности работы на режимах, упрощающих процесс, обеспечивающих экономию материалов и времени.

    Длительный успешный опыт сотрудничества с различными производствами существенно обогатил и разнообразил профессиональное мастерство наших сотрудников. Что позволяет им надлежащим образом организовать обучение, передать собственный опыт и уникальные наработки, позволяющие оптимизировать производство с использованием лазерного оборудования.

    Купить станок, предназначенный для лазерной резки металла, клиент может в различных организациях. Но таким багажом знаний, практического опыта, который накоплен нашими мастерами сервисной службы, менеджерами, обладают далеко не все продавцы.

    Выбор параметров лазера для качественной резки металла

    Мощность лазера для резки металла определяет его максимальные возможности. Одно из главных правил при покупке такого устройства — станок для резки металла лазером нужно покупать с запасом. Ведь наличие запаса силы гарантирует большую производительность и возможность дальнейшего развития организации.

    Читайте также:
    Наждачный станок своими руками

    Что это за показатель — мощность лазера для резки?

    Мощность лазера для резки металла — золотая середина модельного ряда LaserFor BSR, которая находится в районе от 500 Вт до 3 кВт. Это оборудование — надежный инструмент, которому можно доверить большое количество работы и при этом не бояться подводных камней.

    Лазерные установки включают в себя три главных параметра:

    • рабочую среду;
    • источник энергии;
    • оптический резонатор.

    По виду рабочей среды устройства для нарезания бывают следующих видов:

    • Твердотельные . Их основной узел заключается в осветительной камере. В ней расположен источник энергии, а также рабочее тело.

    Справка. К твердотельному типу относятся также и волоконные устройства. В них излучение становится выше, а в качестве источника энергии выступает полупроводниковый лазер.

    • Газовые. В них рабочим телом выступает углекислый газ, который прокачивается насосом сквозь газоразрядную трубку и заряжается электрическими разрядами. Чтобы усилить излучение, ставят прозрачное зеркало.
    • Газодинамические. Они являются самыми мощными. Рабочее тело в них — углекислый газ, который нагрет до 3000 градусов. Он заряжается маломощным лучом. Газ с большой скоростью прокачивается через узкий канал, резко расширяется и охлаждается. В итоге его атомы переходят из заряженного в простое состояние, и газ становится источником излучения.

    Для резки металла

    Мощность нарезания материала лазером зависит от его теплопроводности: чем она выше, тем эффективнее будет процедура, в среднем это 0,15–12,5 м/с. Мощностная характеристика определяется плотностью потока и достигает 10 в 8 степени Ватт на один квадратный сантиметр. Также она определяется в зависимости от толщины заготовки и в среднем достигает 0,5–1,5 кВт.

    В зависимости от типа используемых материалов

    Справка. Чтобы нарезать металл с помощью специального оборудования, потребуется сила, которая в среднем составляет 450–500 Вт. Эффективным данный способ считается при толщине заготовок не выше 6 мм. При 20–40 мм подобное оборудование используется редко. Для материала большой толщины резка не осуществляется.

    Резка лучом возможна, если материалом выступает:

    • Сталь. Максимальная толщина листа не должна быть выше 20 мм, иначе необходимо использовать другой метод.
    • Нержавеющая сталь. В этом случае ограничение составляет 16 мм. При таких показателях удастся избежать появления облоя и его можно легко удалить.
    • Латунь. Для резки этого материала подойдут 12 мм листы, так как его сопротивление достаточно большое.
    • Алюминиевый сплав. Можно резать металлические листы толщиной не выше 10 мм.

    Каждому из этих видов материала соответствует свой вид оборудования.

    Справка. Нарезание материала лучом не используется на вольфраме, титане, молибдене. Они обладают высокой прочностью, которая приведет к выходу устройства из строя.

    В зависимости от толщины

    Для качественной нарезки материала нужно учитывать несколько факторов. К примеру, для малоуглеродистых сталей параметры будут такими:

    • При толщине в 1 мм мощность должна быть 100 Вт, а скорость резки заготовки 1,6 м в минуту.
    • Для изделий плотностью в 1,2 мм — 400 Вт, а скорость резки — 4,6 м в минуту.
    • Изделия в 2,2 мм и выше нуждаются в оборудовании силой 850 Вт и резке около 1,8 м в минуту.

    Если обработке подвержена нержавеющая сталь, то параметры следующие:

    • Для заготовки в 1 мм хватит мощности в 100 Вт.
    • Если заготовка имеет толщину 1,3 мм, то сила вырастает до 400 Вт.
    • Изделия толщиной в 2,5 мм обрабатывают лазером такой же силы, как и в предыдущем пункте, но в этот раз скорость падает до 1,3 м в минуту.

    При резке титана параметры следующие:

    • Материал толщиной 0,6 мм обрабатывают устройством, имеющим силу 250 Вт.
    • Заготовки толщиной 1 мм обрабатывают с силой в 600 Вт.

    В зависимости от производительности

    Чем мощнее источник лазерного станка, тем толще может быть лист материала. У лампового устройства мощностью 500 Вт есть два достоинства, которых нет у оборудования меньшей силы. Им можно разрезать латунь и алюминий, что нельзя осуществить оборудованием меньшей мощности из-за большой отражательной способности этого материала.

    Если потребности в производстве и производственные задачи высокие, то вы свободно достигнете их, используя силу 250 или 500 Вт. Если предполагается нарезка металла, то понадобится 500 Вт мощности, а если нужен просто станок для резки деталей, то хватит и 100 Вт.

    Станки для лазерной резки металла — современное решение, которое нацелено на будущее. Их главные отличия состоят в качестве и сбалансированности всех элементов вместе с современными разработками в области ПО.

    • 01 ноября 2020
    • 2101
  • Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    gmnu-nazarovo.ru
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: