Как делают металл

Производство железа: особенности выплавки и добычи сырья

Феррум является четвертым по многочисленности элементом на нашей планете. Являясь настолько популярным, оно максимально упрощает процесс собственной добычи. К сожалению, в чистом виде оно все-таки не встречается, потому – придется добывать его из руды. Благо, извлечь его из минералов и получить чистый «Fe» намного проще, чем, скажем, уран или даже алюминий.

В данной статье мы рассмотрим вопрос, что делают из железной руды, как из нее добывается железо и куда его применяют.

В какой форме металл встречается в природе?

Всего существует две разновидности, в которой добываются металлы:

  1. Самородная форма. Платина, ртуть, золото, медь, серебро и некоторые другие металлы в природе находятся уже в свободном состоянии. Они не требуют длительной обработки. Чтобы получить сырье для изготовления конечного изделия, такие металлы очищают от примесей механически либо с задействованием реагентов.
  2. В виде руды. Представляют собой соединения, которое находится в горных породах/минералах. Извлечение металла производится исключительно промышленным способам. В руде обычно встречаются либо оксид, либо соли металлов. К последним относятся сульфиды и карбонаты. Одна руда может содержать несколько металлов, то есть являются полиметаллическими, к примеру, медно-цинковые, свинцово-серебряные и другие.

Вторая форма встречается в природе гораздо чаще. Исключение составляют только драгоценные металлы, добыча которых связана с очисткой от посторонних примесей.

Применение железа

Примечательным можно считать тот факт, что из самого Феррума, в его химически чистой форме, в мире практически ничего не делается и не производится. Данный элемент очень легко окисляется, вступая в реакции в кислородом или другими элементами. Так для чего нужна железная руда? Все просто. Феррум, обогащенный карбоном (сплав чугуна) – весьма и весьма популярный материал. Чугун может или служить самостоятельной единицей для изготовления каких-либо вещей и предметов, или же быть промежуточным звеном между железом, и сталью.

Сталь – это сплав железа, углерода и других элементов. Железа должно быть не менее 45%, карбона – от 0,02 до 2,14 процента. Если выше 2,14% – это уже чугун. И уж сталь-то, в десятках своих вариаций, в наше время используется практически везде. Машиностроение, авиация, приборостроение, космические постройки, ядерная энергетика, медицина (существует даже термин – хирургическая сталь), оружейная отрасль (как холодное, так и огнестрельное), сельхозинвентарь, строительная продукция и т.д. За счет такой популярности стали, смело можно утверждать, что ни один металл периодической таблицы не используется так интенсивно и в таких количествах на Земле, как железо.

Действительно, сфер производства продукции железной руды, а также соединений и сплавов на основе Феррума – просто не счесть. Однако, в будущем, при таких темпах и масштабах добычи, перед человечеством могут встать два вопроса: что делать, когда запасы этого металла в недрах нашей планеты станут иссякать? И как поступать с теми гигантскими котлованами по всей планете, которые остаются после проведения добычи железной руды открытым способом.

Какие способы получения металла существуют?

Руда, в которой содержатся разнообразные соединения металла, бывает разной. Конкретный состав влияет на технологию получения материала:

  • Восстановление из оксидов с задействованием углерода. Относится к основному способу получения многих металлов. Из оловянного камня выплавляют — олово, из железной руды получают чугун. Из других металлов выплавку проводят из оксидов.
  • Обжиг в специальной промышленной печи. Данная технология применяется к сернистой руде. Этот способ предполагает то, что в результате обжига в специальной печи получают сернистое соединение.

Состав руды напрямую влияет на конкретную технологию обработки руды.

Производители

На сегодняшний день в разных странах есть крупные месторождения железной руды, которые являются базой для производства мировых запасов стали. В частности, на Россию и Бразилию приходится 18 % мирового производства стали, на Австралию – 14 %, Украину – 11 %. Самыми крупными экспортерами является Индия, Бразилия, Австралия. Отметим, что цены на металл постоянно меняются. Так, в 2011 году стоимость одной тонны металла составляла 180 долларов США, а к 2016 году была зафиксирована цена в 35 долларов США за тонну.

Металлургическая промышленность

Представляет собой отрасль производства по получению разнообразных металлов из руды. Металлургией называют не только промышленное производство. Этот термин применяется и к науке, изучающей различные промышленные методы получения металла. Металлургический процесс представляет собой восстановление катионов металла с задействованием самых различных восстановителей. Металл из руды получают при задействовании определенных восстановителей. Последние подбирают с учетом активной составляющей металла, затратах, соблюдения экологических правил. Обязательно рассматривают и целесообразность выполнения металлургического процесса. Применяют три основных технологии получения металла из различной руды:

  • электрометаллургическую;
  • пирометаллургическую;
  • гидрометаллургическую.

Каждый метод обработки руды имеет свои особенности.

Гидрометаллургия

Заключается в восстановлении металла из солевых водяных растворов. Этот технологический процесс проводится в два этапа:

  1. в правильно подобранном реагенте растворяют рудное соединение, которое позволяет получить раствор соли металла;
  2. из раствора, полученного в первом шаге, вытесняют либо активные металлы, либо проводят электролитическое восстановление.
Читайте также:
Из какой стали делают арматуру

Чтобы получить чистую медь из руды с содержанием CuO, на сырье воздействуют серной разбавленной кислотой. Из раствора сульфата методом вытеснения железа либо электролизом получают чистую медь. По аналогичной (близкой к данной методике) вырабатывают золото, уран, цинк, молибден, серебро.

Особенности технологического процесса

Сначала металлы извлекают из земных недр, добывая полезные ископаемые. Далее руды обогащают, чтобы улучшить их технические характеристики. Существует карьерная (открытая) разработка месторождений, а также закрытый (шахтовый) способ добычи металлических руд. В некоторых случаях комбинируют подземный и открытый вариант разработки рудных залежей, если для этого есть объективные причины. Чтобы выяснить нахождение руд в земных недрах, разработаны специальные поисковые способы, которые включают в себя разведку и исследование месторождений.

При проведении процедуры обогащения ископаемых выделяют полезные компоненты, промпродукты, рудный концентрат, а также отвальные хвосты. При этом учитывают электрическую проводимость, форму зерен, химические свойства, крупность, магнитную восприимчивость, отличия по плотности между пустой породой и полезным компонентом.

Среди способов извлечения металла из обогащенной руды лидирует электролитическое восстановление. Пирометаллургия основывается на преобразовании сырья в чистые компоненты при повышенных значениях температур, а в гидрометаллургии для подобных целей применяют водную химию. При выборе технологических способов учитывают не только сам металл, но и степень его чистоты.

Электрометаллургия и пирометаллургия

Технология электрометаллургии представляет собой восстановление металла посредством метода электролиза расплава либо раствора из данных соединений. Подобным образом получают металлы из руды щелочных, щелочноземельных металлов или алюминия. Электролиз применяют для расплавов оксидов, хлоридов металлов, гидроксидов. Пирометаллургия представляет собой технологию восстановления из руды при высокой температуре, а также с такими восстановителями, как магний, алюминий, двуокись углерода, водорода либо углерода. Олово получают из касситерита, а медь — из куприта путем прокаливания с коксом, то есть углеродом.

Получение металла из сульфидных и карбонатных руд

На первом этапе сульфидные руды подвергают обжигу, когда к сырью поступает воздух. В результате получают оксид, который восстанавливают с помощью угля. Аналогичным способом прокаливают карбонатные руды. Они распадаются под воздействием высоких температур и образуют оксиды, которые затем восстанавливают углем.

Данная процедура позволяет получить цинк, германий, свинец, железо, медь, кадмий и прочие металлы. Они отличаются тем, что не образуют прочные карбиды с углеродом. В качестве восстановителей могут выступать водород и активные металлы. Данный метод позволяет получать довольно чистые металлы. Чаще всего задействуют алюминий, который имеет высокую теплоту образования оксида.

Как получают щелочные металлы?

Массовое получение щелочных металлов считается одним из самых сложных процессов. Это обусловлено высокой активностью данного соединения, поскольку в природе оно встречается исключительно в связанном виде. Сильные восстановители требуют больших энергетических затрат. Они могут быть полученны четырьмя способами:

  1. Литий производят из оксида в вакууме либо посредством электролиза хлорида этой руды, который получают путем переработки сподумена.
  2. Натрий получают путем прокаливания соды и угля в закрытом плотно тигле. Еще одним способом получения данного металла является электролиз расплава хлорида натрия с задействованием кальция.
  3. Рубидий и цезий получают восстановлением хлоридов, соединением с помощью кальция при температуре от 700 и до 800 градусов. Если задействуют цирконий, температура может опускаться до 650 градусов. Такая технология получения металла из руды является энергозатратной и дорогой.
  4. Калий производят при выполнении электролиза расплава солей либо пропусканием паров натрия через хлорид данного соединения. Этот металл получают при вступлении в реакцию гидроксида калия и жидкого натрия при температуре 440 градусов.

Почему используют именно сплавы?

Технику производят из металлических материалов с многочисленными свойствами. Чистейшие и полученные различные способами металлы содержат в себе небольшие следы примесей, но не обладают нужными характеристиками. Чтобы добиться необходимых эксплуатационных свойств, используют сплавы. Они обладают необходимыми физическими свойствами и позволяют производить огромное количество разнообразных изделий. Сплавами называют однородные макроскопические материалы, которые являются двух- и многокомпонентными. Основная доля химических элементов приходится именно на металлы.

Сплавы отличаются собственной структурой. Все сплавы состоят из следующих компонентов:

  • основы — один либо большее количество металлов;
  • добавки — модифицирующие либо легирующие в небольшом количестве;
  • примеси — остаточные вещества природного, случайного либо технологического характера.

Конкретный состав уже обусловлен сплавом и конкретным производимым конечным изделием.

Мягкие виды

Алюминий серебристо-белого цвета характеризуется лёгкостью, высокой устойчивостью к коррозии, хорошей электропроводностью и пластичностью. Характеристики материала сделали его полезным в самолётостроении, электропромышленности и пищевом производстве. Алюминиевые сплавы применяются в сфере машиностроения.

Магнию свойственна низкая коррозийная устойчивость, зато лёгкий материал незаменим в технической области. В сплавах с этим металлом используют алюминий, марганец и цинк, которые хорошо режутся и отличаются высокой прочностью. Магниевые сплавы используют в производстве корпусов для фотоаппаратов, двигателей и других приборов.

Читайте также:
Изготовление металлических дверей своими руками

Титан применяют в машиностроении, ракетной отрасли и химической промышленности. Сплавы с содержанием этого вещества характеризуются небольшой плотностью, отличными механическими свойствами, коррозийной устойчивостью и податливостью обработке давлением.

Подведение итогов

Металлы, которые используются в производстве различных изделий, не являются чистыми. Большинство добывают в виде руды. Она изымается в карьеры чаще всего подрывным способом и доставляется на перерабатывающий металлургический комбинат. Конкретный метод обработки зависит от разновидности руды. Получаемый в результате металл может быть условно чистейшим, поскольку содержит некоторое количество примесей. Это не делает его пригодным для производства конечных изделий, поскольку материал еще не обладает всеми необходимыми эксплуатационными свойствами. Для изготовления металлической продукции используют сплавы.

Возникновение слова

«Металл» — это слово, которое было заимствовано из немецкого языка. Сначала под ним подразумевали не только простые вещества, но и руды, минералы. Во времена Михаила Васильевича Ломоносова их разграничили.

В латинском языке «металл» — это «копь, рудник». Подобное значение было заимствовано из греческого языка, поэтому можно говорить о том, что у данного слова интересная история.

Путь металла от руды до изделия

Большинство металлов представляют собой химические соединения. Такая форма не позволяет получить полноценный материал для дальнейшего производства конечных изделий. Добываемая на месторождениях руда не подходит для данных целей. Чтобы получить из сырья металл, сырье должно подвергаться определенному технологическому процессу.

В какой форме металл встречается в природе?

Всего существует две разновидности, в которой добываются металлы:

  1. Самородная форма. Платина, ртуть, золото, медь, серебро и некоторые другие металлы в природе находятся уже в свободном состоянии. Они не требуют длительной обработки. Чтобы получить сырье для изготовления конечного изделия, такие металлы очищают от примесей механически либо с задействованием реагентов.
  2. В виде руды. Представляют собой соединения, которое находится в горных породах/минералах. Извлечение металла производится исключительно промышленным способам. В руде обычно встречаются либо оксид, либо соли металлов. К последним относятся сульфиды и карбонаты. Одна руда может содержать несколько металлов, то есть являются полиметаллическими, к примеру, медно-цинковые, свинцово-серебряные и другие.

Вторая форма встречается в природе гораздо чаще. Исключение составляют только драгоценные металлы, добыча которых связана с очисткой от посторонних примесей.

Какие способы получения металла существуют?

Руда, в которой содержатся разнообразные соединения металла, бывает разной. Конкретный состав влияет на технологию получения материала:

  • Восстановление из оксидов с задействованием углерода. Относится к основному способу получения многих металлов. Из оловянного камня выплавляют — олово, из железной руды получают чугун. Из других металлов выплавку проводят из оксидов.
  • Обжиг в специальной промышленной печи. Данная технология применяется к сернистой руде. Этот способ предполагает то, что в результате обжига в специальной печи получают сернистое соединение.

Состав руды напрямую влияет на конкретную технологию обработки руды.

Металлургическая промышленность

Представляет собой отрасль производства по получению разнообразных металлов из руды. Металлургией называют не только промышленное производство. Этот термин применяется и к науке, изучающей различные промышленные методы получения металла. Металлургический процесс представляет собой восстановление катионов металла с задействованием самых различных восстановителей.
Металл из руды получают при задействовании определенных восстановителей. Последние подбирают с учетом активной составляющей металла, затратах, соблюдения экологических правил. Обязательно рассматривают и целесообразность выполнения металлургического процесса. Применяют три основных технологии получения металла из различной руды:

  • электрометаллургическую;
  • пирометаллургическую;
  • гидрометаллургическую.

Каждый метод обработки руды имеет свои особенности.

Гидрометаллургия

Заключается в восстановлении металла из солевых водяных растворов. Этот технологический процесс проводится в два этапа:

  1. в правильно подобранном реагенте растворяют рудное соединение, которое позволяет получить раствор соли металла;
  2. из раствора, полученного в первом шаге, вытесняют либо активные металлы, либо проводят электролитическое восстановление.

Чтобы получить чистую медь из руды с содержанием CuO, на сырье воздействуют серной разбавленной кислотой. Из раствора сульфата методом вытеснения железа либо электролизом получают чистую медь. По аналогичной (близкой к данной методике) вырабатывают золото, уран, цинк, молибден, серебро.

Электрометаллургия и пирометаллургия

Технология электрометаллургии представляет собой восстановление металла посредством метода электролиза расплава либо раствора из данных соединений. Подобным образом получают металлы из руды щелочных, щелочноземельных металлов или алюминия. Электролиз применяют для расплавов оксидов, хлоридов металлов, гидроксидов.
Пирометаллургия представляет собой технологию восстановления из руды при высокой температуре, а также с такими восстановителями, как магний, алюминий, двуокись углерода, водорода либо углерода. Олово получают из касситерита, а медь — из куприта путем прокаливания с коксом, то есть углеродом.

Получение металла из сульфидных и карбонатных руд

На первом этапе сульфидные руды подвергают обжигу, когда к сырью поступает воздух. В результате получают оксид, который восстанавливают с помощью угля. Аналогичным способом прокаливают карбонатные руды. Они распадаются под воздействием высоких температур и образуют оксиды, которые затем восстанавливают углем.

Читайте также:
Изготовление изделий из бронзы

Данная процедура позволяет получить цинк, германий, свинец, железо, медь, кадмий и прочие металлы. Они отличаются тем, что не образуют прочные карбиды с углеродом. В качестве восстановителей могут выступать водород и активные металлы. Данный метод позволяет получать довольно чистые металлы. Чаще всего задействуют алюминий, который имеет высокую теплоту образования оксида.

Как получают щелочные металлы?

Массовое получение щелочных металлов считается одним из самых сложных процессов. Это обусловлено высокой активностью данного соединения, поскольку в природе оно встречается исключительно в связанном виде. Сильные восстановители требуют больших энергетических затрат. Они могут быть полученны четырьмя способами:

  1. Литий производят из оксида в вакууме либо посредством электролиза хлорида этой руды, который получают путем переработки сподумена.
  2. Натрий получают путем прокаливания соды и угля в закрытом плотно тигле. Еще одним способом получения данного металла является электролиз расплава хлорида натрия с задействованием кальция.
  3. Рубидий и цезий получают восстановлением хлоридов, соединением с помощью кальция при температуре от 700 и до 800 градусов. Если задействуют цирконий, температура может опускаться до 650 градусов. Такая технология получения металла из руды является энергозатратной и дорогой.
  4. Калий производят при выполнении электролиза расплава солей либо пропусканием паров натрия через хлорид данного соединения. Этот металл получают при вступлении в реакцию гидроксида калия и жидкого натрия при температуре 440 градусов.

В чем заключаются отличия сплавов от металлов?

Никакой принципиальной разницы между этими двумя понятиями не существует. Это обусловлено тем, что даже металлы, которые считаются чистейшими, содержат в себе даже небольшое количество примесей. Любые используемые в промышленности и других отраслях металлы являются сплавами по своей сути. Их получают в результате целенаправленного добавления к металлу соединений или элементов для улучшения физических свойств и достижения необходимых эксплуатационных показателей.

Почему используют именно сплавы?

Технику производят из металлических материалов с многочисленными свойствами. Чистейшие и полученные различные способами металлы содержат в себе небольшие следы примесей, но не обладают нужными характеристиками. Чтобы добиться необходимых эксплуатационных свойств, используют сплавы.
Они обладают необходимыми физическими свойствами и позволяют производить огромное количество разнообразных изделий. Сплавами называют однородные макроскопические материалы, которые являются двух- и многокомпонентными. Основная доля химических элементов приходится именно на металлы.

Сплавы отличаются собственной структурой. Все сплавы состоят из следующих компонентов:

  • основы — один либо большее количество металлов;
  • добавки — модифицирующие либо легирующие в небольшом количестве;
  • примеси — остаточные вещества природного, случайного либо технологического характера.

Конкретный состав уже обусловлен сплавом и конкретным производимым конечным изделием.

Подведение итогов

Металлы, которые используются в производстве различных изделий, не являются чистыми. Большинство добывают в виде руды. Она изымается в карьеры чаще всего подрывным способом и доставляется на перерабатывающий металлургический комбинат. Конкретный метод обработки зависит от разновидности руды.
Получаемый в результате металл может быть условно чистейшим, поскольку содержит некоторое количество примесей. Это не делает его пригодным для производства конечных изделий, поскольку материал еще не обладает всеми необходимыми эксплуатационными свойствами. Для изготовления металлической продукции используют сплавы.

Европейская металлургия от костра до мартена

На протяжении всей истории человечества образ хозяйствования нашей цивилизации определяли металлы. Вообще говоря, все первые металлы, открытые человечеством, стоят правее водорода в электрохимическом ряду напряжений металлов. Это так просто потому, что все остальные по закону неумолимой термодинамики будут окислены во влажных и окислительных условиях атмосферы и литосферы. Точнее говоря, те, что правее водорода, тоже будут окислены – но сильно позже. А пока что встречайте: медь, серебро, золото, сурьма!


Справа все интересующие нас металлы, а заодно ртуть и платина. Не влезли палладий и висмут, но они встречаются реже метеоритов

Все эти элементы при определенной доле удачи могут быть встречены в самородном виде – неслыханное счастье для тех, кому до того предстояло пользоваться каменными орудиями труда. Металлу можно придавать почти любую форму, он не раскалывается, а деформируется при ударах, а еще его можно затачивать и делать качественно лучшие орудия труда. Золото, серебро и медь уже к позднему неолиту вовсю использовались для изготовления украшений, а в 6 тысячелетию человечество открыло для себя медные инструменты. Однако самым лучшим доступным металлом было, конечно, железо. Для того, чтобы найти его в чистом виде, нужно поистине дьявольское везение – оно встречается только в упавших метеоритах и является настоящей царской прерогативой (так, кинжал из гробницы Тутанхамона сделан именно из такого железа).

Новую веху в истории обработки металлов ознаменовала восстановительная металлургия. Люди открыли, что, если спекать некоторые минералы с углем, в камешках получившегося шлака заблестят кусочки меди. Это позволило человечеству перейти на небывало высокий по сравнению с неолитом уровень технологий. Новые медные инструменты и так были на порядок лучше каменных, но теперь они стали по-настоящему доступны. Вскоре появились первые печи для плавки меди, которые, например, можно найти в древних городах Анатолии. Так, первое найденное литое изделие датируется 5000 г. до н. э.

Читайте также:
Изделия из тугоплавких металлов


диаграмма Эллингема

Теперь сделаем небольшое отступление обратно к современности и обратим свои взоры на диаграмму Эллингема. Эта диаграмма показывает нам, насколько при разных температурах стабильны различные оксиды. Также она позволяет легко определить, восстановит ли углерод или угарный газ нужный оксид до металла при данной температуре – для этого всего лишь нужно посмотреть, в какой точке линия С и СО становится ниже линии соответствующего металла. Из нее можно понять, например, что даже при небольшом нагревании и углеродом, и угарным газом медь восстановится со свистом, а вот чтобы восстановить железо, придется хорошенько постараться (но все же меньше, чем для многих других металлов).

Проблема состоит не только в этом. Мало просто восстановить металл, необходимо его еще и расплавить, иначе вместо слитка, которому можно придать любую форму, получится просто серый (в случае железа) или красный (в случае меди) порошок. Поэтому для эффективного изготовления железных изделий нужна такая печь, которая сможет расплавить железо. Однако построить ее не так-то просто, первые железоделательные печи появились на территории той же Анатолии у хеттов примерно к 1200 г. до н. э. До этого человечество обходилось медью или бронзой – сплавом меди с мышьяком или оловом (бронза была попрочнее меди, дольше изнашивалась и плавилась при меньшей температуре).


Сыродутная печь

Такие требования сформировали облик европейской железной металлургии на многие века. Схема печи оставалась общей: высокая глиняная/земляная труба, в которой вперемежку уложены слои железной руды (как правило, болотной бурой слизи или каменной руды) и древесный уголь. Все это мероприятие было крайне малопрофитным в смысле целевого продукта, в железо превращалось около 30% руды в лучшем случае. Несмотря на это, железные орудия были на порядок выгоднее орудия из любого другого металла, доступного европейцам, из-за не в пример большего качества.

Описанный выше способ выплавки железа назывался сыродутным. Получившийся кусок железа содержал крайне большое количество шлаков, поэтому его проковывали большое количество раз. При этом получившееся железо обладало существенным недостатком. При получении оно было крайне твердым и незатачиваемым (так как содержало большое количество углерода), а при дальнейшем выгорании – очень мягким. Поэтому единственным способом получить нормальное, функциональное изделие было сваривание нескольких пакетов железа методом проковки сложенных слоев железа, просыпанных между собой бурой. Усовершенствовав технологи многократной проковки заготовки до предела и чередуя мягкие и твердые слои железа, человечество научилось изготавливать булатную сталь – один из лучших видов металлургической продукции своего времени.

Одним из основных шлаков в металлургическом производстве Средневековья был чугун. Он выплавлялся из руды раньше всех, потому что в нем больше углерода, а, чем больше в каком-либо твердом веществе примеси, тем ниже его температура плавления. Также чугун крайне хрупок и тяжел, что затрудняло его применение в металлургии. Довольно большая часть железа всегда уходила в шлаки в виде чугуна, откуда его было уже не выдернуть. В больших по размеру печах (штукофенах и блауофенах) с четырех-пятиметровыми «резервуарами» для руды и угля в чугун и шлак уходило просто огромное количество железа. Обычно из чугуна потом изготавливали низкотехнологические изделия типа кувалд, ядер и прочего. Забавный факт – и по сей день шлаки металлургического производства используются в дорожном строительстве как материал для брусчатки.


Схема современной доменной печи

Следующей вехой развития железного производства стали доменные печи. Человечество догадалось, что, если печь сделать достаточно большой, можно будет подбрасывать в нее уголь и руду прямо в процессе плавки, а железо, сталь, чугун и шлаки сливать из нее через отдельные летки. Этот процесс в 15-16 вв. стал очередным технологическим бумом для Европы – несмотря на то, что доменную печь нельзя было останавливать, а угля и руды она жрала абсолютно непомерное количество, она позволила европейцам превзойти весь мир по выплавке металла на душу населения, а, следовательно, по артиллерийской мощи.

С учетом роста населения и постоянно растущего спроса на железо его производство на душу населения в 11-13 вв. достигало порядка килограмма на человека в год. Для сравнения – современный небольшой ножик весит порядка 200 граммов, лезвие небольшого топора – около 700 граммов, а ведь еще нужно на чем-то готовить, чем-то строить, опять же всяческие метизы типа гвоздей, скоб, крюков и прочего. В итоге мы понимаем, что уровень сыродутной металлургии даже с учетом перекрытия некоторых потребностей другими металлами давал ужасающе мало.

Читайте также:
Замена алюминиевого провода медным при ремонте электродвигателей

Ситуация менялась, как ни парадоксально, с увеличением количества металлических изделий – можно было срубать больше деревьев, прокапывать более глубокие шахты, возводить более сложные конструкции. Производство росло в геометрической прогрессии – размер печей для выплавки железа все увеличивался, увеличивался от простой сыродутной печи к штукофену и блауофену и наконец-то вырос до настоящей домны с непрерывным циклом выплавки. И тут понеслась – положительная обратная связь сделала свое дело.

Всеевропейское внедрение в 15-16 веках доменной печи сразу, буквально за несколько десятилетий, увеличило количество производимого на душу населения железа втрое, а то и вчетверо. Нашей цивилизации впервые стали по-настоящему доступны каменные железные руды. Забегая вперед, скажу, что в Швеции, стране, которая на тот момент поставляла больше половины всего европейского железа, к 18 веку производство достигло невероятных 20 кг железа на человека. Впрочем, до обогащения и прочих технологических процессов мы пока еще не дошли – пока что это просто загрузка печи камнями руды, углем и флюсом – специальным веществом, чтобы снизить количество примесей в плаве и уменьшить температуру плавления.

Проблемой доменного производства была необходимость в огромном количестве качественного древесного угля – каменный уголь содержал много вредных для железа примесей, поэтому деревья приходилось вырубать в огромных масштабах. Об экологии тогда никто не заботился, но бескрайние леса были, очевидно, не во всех странах. Также откровенным минусом все еще был уход огромного количества железа в чугун, хрупкий и потому не годный для создания инструментов и метизов. Единственной масштабной отраслью применения чугуна было артиллерийское дело – на отливку пушек и ядер шли многие тонны чугуна. И вот тут человечество сделало пока чисто эмпирическое, но очень важное открытие – из чугуна при высокой температуре может выгорать углерод. Естественно, ни о каком углероде речь тогда не шла, но этот факт позволил железоделательному производству перейти еще на один технологический уровень выше.

Все помнят, как в морозилке замерзает соленая вода? Образуется большая ледышка, самого рассола становится меньше, концентрация соли в нем растет. Похожий процесс происходит и при плавлении чугуна на воздухе. Углерод из него частично выгорает, частично переходит в жидкую фазу, а на дне печи начинают образовываться кристаллы железа. Это явление заметил английский металлург Генри Корт, и вскоре практика пудлингования – перемешивания расплава чугуна вошла в Британии в крайне широкое распространение.


Печь для пудлингования. 1) Под 2) Труба с клапаном для регулирования силы тяги 3) Порог, отделяющий металл в рабочем объёме от топлива 4) Колосниковая решётка, на которой находится горящее топливо (уголь) 5) Боковое окно для пудлинговщика 6) Окно для заброса топлива

Как происходило пудлингование? Сначала в печи, обложенной огнеупорной футеровкой (отделка печи, позволяющая оградить тело печи от разрушительного влияния расплавов) без доступа открытого пламени расплавлялся чугун. По прошествии некоторого времени рабочие засовывали в расплав огромные железные штанги (около 40 килограммов весом) и начинали интенсивно перемешивать его. Вскоре на штангах выкристаллизовывалось чистое железо, температура плавления которого намного выше, чем у чугуна. Далее получившуюся крицу вынимали из расплава, проковывали и разделяли на слитки.

Естественно, процесс этот был далеко не из самых легких, однако он позволил высвободить для промышленности огромное количество чистого железа и разом решить проблему переизбытка чугуна. Процесс пудлингования доминировал в металлургии на протяжении практически ста лет, после чего был вытеснен сразу тремя способами – бессемеровским (открытым Генри Бессемером в 1856 году), томасовским (открытым в 1878 году Сидни Гилкристом Томасом) и мартеновским.


Принцип работы любого конвертера

Бессемеровский и томасовский процессы довольно схожи. В качестве основного реактора используется веретенообразная печь с огнеупорной футеровкой (в случае бессемеровского процесса – кислой, содержащей SiO2, в случае томасовского – основной, содержащей доломит CaCO3xMgCO3). В процессе плавки печь нагревается, опять же, без доступа открытого пламени, после чего продувается сжатым воздухом через сопла, расположенные в дне печи. Расплав поддерживается в горячем состоянии из-за процесса окисления примесей руды, проходящего с выделением температуры. Далее полученное железо подвергается дополнительному науглероживанию с образованием стали. Основное отличие двух способов состоит в химическом составе плава.

В томасовском процессе могут быть использованы загрязненные серой и фосфором руды – продукты окисления фосфора и серы связываются материалом футеровки, давая окисляющий железо углекислый газ. У этого способа есть недостаток – фосфор и сера удаляются из плава не в полном объеме, поэтому железо получается более ломким. В бессемеровском же процесса футеровка печи не позволяет использовать основные флюсы, что делает его более требовательным к качеству руды. Однако этот способ дает более качественное железо, что и определило его производственное преимущество в долгосрочной перспективе.

Читайте также:
Как быстро разобрать электродвигатель на медь

Настало время сказать несколько слов и про мартеновский процесс. Он был открыт в 1864 году французским инженером Пьером Мартеном. Основное его отличие от бессемеровского и томасовского способов состоит в том, что газообразное топливо (обычно природный газ или коксовый газ) подаются прямо в зону плавки, где расплавляют чугун и одновременно окисляют его. Мартеновский процесс получил особенно широкое распространение в качестве способа передельной металлургии, которая использует для выплавки новой стали железный лом.

Сейчас практически все процессы старины глубокой (кроме доменной выплавки, конечно) уже ушли в прошлое. Их заместили новые гиганты – конвертерно-кислородный (переиначенный бессемеровский) и электродуговой способы выплавки стали. Однако история их, как мне кажется, довольно увлекательна, чтобы помнить ее и интересоваться ей.


Божественно прекрасный томасовский конвертер

Автор: Павел Ильчук

VPS серверы от Маклауд быстрые и безопасные.

Зарегистрируйтесь по ссылке выше или кликнув на баннер и получите 10% скидку на первый месяц аренды сервера любой конфигурации!

Методы добычи и получения металлов

Металлы применяются практически во всех сферах. Сейчас известно большое количество однородных материалов и сплавов, которые обладают разными техническими характеристиками. Получение металлов — особый процесс, от правильности проведения, которого зависит качество готового материала.

Загрузка руды

Что такое металл?

Металлы — группа элементов, которые являются простыми веществами и обладают рядом характерных металлических свойств:

  • электро- и теплопроводностью;
  • высокой прочностью;
  • большой удельной массой;
  • высоким температурным коэффициентом сопротивления;
  • ковкостью;
  • характерным металлическим блеском;
  • высокой пластичностью.

Для изменения свойств материала при производстве к его составу добавляются сторонние компоненты, которые называют легирующими добавками. С помощью этого способа можно получить материал с нужными техническими характеристиками.

Серьезной разницы между металлами, сплавами нет. Абсолютно чистых материалов не существует. Каждый из них содержит несколько компонентов. Металлы с наименьшим содержанием сторонних включений редко применяются в промышленных масштабах, поскольку не имеют требуемых технических характеристик.

  • железо, титан, уран;
  • золото, серебро, платина;
  • медь, алюминий, цинк;
  • вольфрам, кобальт, никель;
  • магний, бериллий, палладий;
  • свинец, олово.

Металлы можно разделить на благородные, цветные, черные.

Медное украшение (Фото: Instagram / sweetviolet_handmade)

Способы получения и добычи

Добыча и обработка проводится на природных рудниках. Потом расходное сырье доставляется до литейного предприятия, где происходит его переработка в конечный материал. Способы получения:

  1. Порошковый. При изготовлении сплавов используются порошки — смесь основных компонентов сплава по ГОСТу. С помощью специального оборудования порошок спрессовывается, ему придают определенную форму. После этого расходный материал спекают в промышленной печи.
  2. Литейный способ. Все компоненты будущего сплава сначала расплавляются, а потом перемешиваются. Смесь должна застыть.

Природные источники

Самое большое количество металлов содержится в земной коре. Их соединения можно найти в разных продуктах питания, воде, воздухе, химических веществах.

Природные соединения
  • сульфиды — киноварь, цинковая обманка, серный колчедан;
  • хлориды — каменная соль, сильвинит;
  • сульфаты — гипс, глауберова соль;
  • карбонаты — магнезит, доломит, известняк, мрамор, мел;
  • оксиды — красный, магнитный, бурый железняк;
  • нитраты — чилийская селитра.

Основные природные соединения — руды, которые встречаются в разных областях земного шара.

Способы добычи

Существует два способа добычи металлических руд:

  1. Открытый. Подразумевает разработку огромного карьера, который углубляется к центру. С его глубины на карьерных самосвалах руда вывозится наверх, где проходит дальнейшую переработку. Средняя глубина карьеров — 300 метров. Для разработки применяются крупные экскаваторы, земснаряды, карьерная техника. Карьерный метод добычи металлической руды применяется только, если после проверки почвы в ней было обнаружено более 57% руды. Главный недостаток карьера — малая глубина разработки.
  2. Закрытый. Подразумевает разработку шахт, которые могут уходить вниз на глубину нескольких сотен метров. Применяется, когда на поверхности после проверки было обнаружено менее 57% полезных руд. Внешне шахта напоминает колодец, который разветвляется в стороны на большой глубине. Главный недостаток — опасность для рабочих (частые обвалы, взрывы газов, большая вредность для здоровья).

Один из современных способов добычи металлической руды — СГД. Представляет собой гидромеханических метод добычи руды, который подразумевает создание глубокой шахты, снабженной трубопроводом с гидромонитором. Струя воды под большим напором подается в трубопровод. С ее помощью откалываются горные породы, которые всплывают наверх шахты. Эффективность данного способа небольшая, но он полностью безопасен для людей.

Шахта (Фото: Instagram / subcities)

Богатые рудники

Богатые железные рудники:

  1. Бакчарское железорудное месторождение.
  2. Абаканское железорудное месторождение.
  3. Абагасское железорудное месторождение.
  4. Курская магнитная аномалия.

Курская магнитная аномалия является самым большим месторождением железной руды в мире. По примерным расчетам здесь находится около 210 миллиардов тонн полезной руды, что составляет 50% от общего количества запасов на планете.

Самые богатые месторождения алюминиевых руд находятся в

  • Венгрии;
  • Франции;
  • Индии;
  • Южной Африке;
  • Казахстане;
  • России;
  • Югославии;
  • Кольском полуострове;
  • Сибири.
Читайте также:
Как заточить резцы для резьбы по дереву

Богатые месторождения медной руды расположены в США, Швеции, Канаде, России, Финляндии, ЮАР.

Медная руда (Фото: Instagram / alex_tango1910)

Гидрометаллургия

Методика, которая основана на проведении химических реакциях. Они протекают в различных растворах. Наиболее распространенные материалы, которые получаются подобным способом — никель, цинк, золото.

Пирометаллургия

Из расходного сырья металл извлекается под воздействием высоких температур. Для проведения данного способа применяются печи, плавильни. Этим методом получают чугун, свинец, сталь, никель, медь, хром. Для изготовления активных металлов важно использовать восстановители.

Электрометаллургия

Подразумевает обработку расходного сырья электрическим током. Сила тока изменяется зависимо от преобладающих в составе руды компонентов. С помощью электрометаллургии получаются разные металлы — щелочноземельные, щелочные. Основные из них — алюминий, магний.

Восстановление

  1. С помощью металлов. Этот процесс называют металлотермией.
  2. С помощью водорода. С помощью этой методики можно получить материал с наименьшим количеством посторонних вкраплений.
  3. С помощью углерода или оксида углерода. Эта методика называется карботермией.

Оборудование

Для получения и обработки применяется разное оборудование:

  1. Для термической обработки — печи, плавильни, горны.
  2. Для изменения шероховатостей поверхностей — шлифовальные станки, пескоструи.
  3. Для создания углублений, обработки кромок, торцов — долбежные, сверлильные, фрезеровальные станки.
  4. Для придания простой или сложной цилиндрической формы — токарные станки.
  5. Для разрезания заготовок — пилы, лазерные или гидроабразивные резаки.

Современное оборудование оснащается автоматическими системами управления, что ускоряет производство, минимизирует физические затраты со стороны человека.

Самодельный горн (Фото: Instagram / vetal7070)

Коррозия

Коррозия — процесс самопроизвольного разрушения сплавов, металлов, который происходит под воздействием окружающей среды. Ржавчина начинает появляться при воздействии кислорода, воды, оксидов серы, углерода.

  • атмосферная.
  • электролитическая;
  • газовая;
  • подъемная;
  • биологическая.

Для удаления ржавчины могут применяться абразивы, химические вещества. Для защиты от ее появления — покрытия, краски, добавки к составу сплава (например, хром).

Без металлов невозможно представить жизнь человека. Они применяются в разных сферах деятельности. Процесс добычи металлической руды для изготовления однородных материалов или сплавов практически не изменился с сотнями лет. Появилось новое оборудование, техника, но суть процесса осталась прежней.

Производственный процесс: Как плавят металл H&F побывал на Новолипецком меткомбинате и узнал, как там делают чугун и сталь.

Новолипецкий комбинат производит 17% всей российской стали. Его строительство началось в 1931 году, а 7 ноября 1934 года доменная печь дала первую партию чугуна. В годы войны производство эвакуировали в Челябинск, после её окончания завод вернулся обратно и в советские годы активно рос: число доменных печей увеличилось до шести, а в 1986-м заработал крупнейший на тот момент в Европе цех прокатки динамной стали. В ходе приватизации завод перешёл в частную собственность — сейчас группой НЛМК, в которую также входит несколько угольных месторождений в России и заводы за рубежом, владеют структуры Владимира Лисина. В прошлом году на липецкой площадке было произведено 12,4 млн тонн металла. Завод выпускает горячий, холодный и горячеоцинкованный прокат, прокат с полимерным покрытием, чугун, слябы и электротехническую сталь.

Новолипецкий металлургический комбинат (НЛМК)

выручка в 2013 г.

Площадь предприятия — 28 кв. км. В 2011 году на комбинате открылась новая доменная печь «Россиянка». Всего на предприятии их семь. Доменная печь состоит из пяти элементов: колошника для загрузки сырья, высокой шахты для нагрева материалов и восстановления железа, цилиндрического распара для плавки металла, заплечиков, где образуется восстановительный газ, и горна. Домна работает непрерывно — остановка производства даже на короткое время потребует длительного восстановления.

Шихтовые материалы, заполняющие всю печь, непрерывно опускаются вниз под действием силы тяжести, а снизу вверх поднимается горячий газ, который нагревает шихту и участвует в восстановительных процессах металла. В горне при температуре 1 800–2 000 °С сгорает кокс. Он соединяется с кислородом в воздухе и образует углекислый газ. Под влиянием высокой температуры газ превращается в оксид углерода, который отнимает у железорудных материалов кислород, восстанавливая железо. Так, стекая вниз через слой раскалённого кокса, железо насыщается углеродом и превращается в чугун.

Чугун скапливается в нижней части печи — горне. На его поверхности собирается шлак — более легкий слой пустой породы. Потом расплавленный металл выпускают через лётки. Чугун разливают в ковши и везут в конвертерный цех, шлак попадает в чаши, которые идут в цех переработки. Потом он может использоваться в строительстве.

Для выплавки стали на комбинате используют конвертеры — ёмкости грушевидной формы, обложенные изнутри огнеупорным кирпичом.

При производстве стали из чугуна путём окисления удаляются примеси. Через вертикальную водоохлаждаемую фурму вдувается технически чистый кислород, который окисляет примеси (углерод, кремний, марганец, фосфор и серу), переводя их в шлак или газовую фазу. После этого металл поступает в цех горячей прокатки.

Читайте также:
Датчик постоянного тока своими руками

Она начинается с предварительного разогрева металлических слитков (слябов) до температуры 1 150–1 250 °С в печах прокатного стана. Затем слябы выдаются на рольганг, который перевозит их к черновой группе из пяти клетей.

Гидросбивы струёй воды под давлением 12,0–16,0 МПа очищают поверхность металла.

Из черновой группы клетей прокат везут к чистовой группе клетей — здесь заготовка приобретает свою конечную толщину.

Затем полоса поступает на одну из трёх моталок, где металл сматывают в рулон (температура смотки — около 650 градусов). На выходе получается горячекатаный прокат.

Этот металл используется в строительстве, производстве оборудования, энергетическом и сельскохозяйственном машиностроении, производстве труб, автомобилей и бытовой техники.

Как делают металл для VW, Renault, Hyundai, Kia. — репортаж с завода

Череповецкий металлургический комбинат рождает смешанные чувства.

Смотрю на грандиозные доменные печи и проезжающие составы с расплавленным металлом — и в голове звучит мелодия «Время, вперёд!» из девятичасовых новостей. А реки раскаленной руды заставляют вспомнить кузни гномов из эпического произведения Толкиена.

Здесь творится магия рождения металла, из которого делают автомобильный лист. Из «северстали» штампуют почти всё, что производится в России, – кабины и кузовá автомобилей ГАЗ, КАМАЗ, Haval, Renault, Nissan, Peugeot, Citroen, Volkswagen, Hyundai и Kia.

Не важно, у вас ГАЗель или Solaris. Толщина металла и оцинковка у них одинаковые!

Стройка вопреки

Череповецкий комбинат появился скорее «вопреки», нежели «благодаря». Но и благодарить есть кого — ученого-металлурга Ивана Павловича Бардина. Именно он предложил не строить комбинат рядом с месторождением руды или угля, который был основным топливом.

По мнению Бардина, Череповецкий завод следовало строить на равном удалении как от обоих месторождений, так и от двух столиц, на перекрестке водных артерий и железнодорожных путей.

Было много возражений, но стройка началась — по распоряжению Сталина, с которым, ясное дело, никто спорить не решался. Проект стартовал ударными темпами: НКВД пригнал около десяти тысяч заключенных. Но помешала война. Стройка возобновилась только в 1947 году, и через восемь лет комбинат дал первую партию чугуна. Причем очень высокого качества. Спустя три года отлили первую сталь. А уже в 1962 году комбинат стал рентабельным — Бардин оказался прав.

Сейчас Череповецкий металлургический выдает по 12 миллионов тонн стали ежегодно. Большая часть этого объема приходится на конструкционную сталь для судостроения и стро­ительной отрасли. Автомобильный лист составляет лишь 10% объема. Однако именно это производство самое технологичное, требовательное и затратное.

Брак не прокатит

Всё начинается с доменных печей, коих в Череповце четыре (скоро закончится строительство пятой). Особая гордость — печь «Северянка» высотой больше 100 метров. Гигантская домна была задута (именно так называется запуск доменной печи) в 1986 году и долгое время оставалась самой большой в мире, попав в Книгу рекордов Гиннесса.

Позже в Японии, Корее и Китае появились домны больше, но в Европе «Северянка» по-прежнему королева. Аппетит под стать размеру — каждый день она сжирает по шесть железнодорожных составов кокса и почти 70 тысяч кубометров газа, отдавая взамен по 13–15 тысяч тонн чугуна — исключительно передельного (так называют чугун для последующей переплавки в сталь). И хотя технология доменного производства не меняется уже столетие, управление и контроль — на современном уровне. Комната операторов напоминает центр управления космическими полетами.

Расплавленный чугун отправляется в сталеплавильный цех, который тоже поражает воображение. Над головой проезжают гигантские чаны; из них расплавленный металл переливают в формы и смешивают с металлоломом и присадками. Состав этого «винегрета» определяет физические и химические свойства стали, необходимые заказчику. При нас готовили сталь для ГАЗа. Точный состав, который требует каждый производитель, держат в секрете. Но всем производителям отправляют высокопрочную сталь, предел прочности которой 1500–2000 мПа. На выходе получают большие раскаленные отливки, так называемый сляб.

После того как газовые резаки настругают одинаковые плиты сляба, в дело вступает стан горячей прокатки «2000». Число означает вовсе не год открытия, а ширину валков, через которые черновой сляб проходит, утончаясь до толщины автомобильного листа. Раскаленные плиты больше километра едут по конвейеру, периодически попадая в тесные объятия валков. Каждый такой проход сопровождается брызгами искр и тяжелым дыханием испаряющейся воды, необходимой для охлаждения.

На выходе прокат закручивается в километровые рулоны. Их-то и отправляют на финальную обработку — в новенький цех оцинковки. Здесь чисто и светло, ничего общего с брутальным производством черного металла. Череповецкая сталь не зря устраивает всех зарубежных производителей, пришедших к нам на рынок. Технологию оцинковки изменили — увеличили температуру процесса (420 градусов), благодаря чему атомы цинка не просто покрывают лист, а проникают глубоко в структуру, что гораздо эффективнее. Не важно, на чем вы ездите — на ГАЗели, Солярисе или Фольксвагене. Они все оцинкованы одинаково. Различаются лишь свойства стали. Так что ржавеют машины по-разному только из-за этого. Ну и из-за качества окраски.

Читайте также:
Как варить медь инвертором

Рулоны нарезают в листы, они проходят оцинковку, после чего их снова сваривают между собой и закручивают в рулоны уже окончательно и бесповоротно — для отправки заказчику. Причем швы увидеть просто нереально — на выходе получается цельный километровый лист. Размер рулонов определяется заказчиком — вес варьируется от 5 до 30 тонн. Но перед этим весь лист проходит контроль, причем очень жесткий. Даже малейший брак недопустим. Всматриваясь в дефектные листы, я иногда не мог найти хоть какой-то изъян. Кстати, совсем недавно на заводе освоили производство и стали DР600, предназначенной для изготовления колесных дисков.

Культура производства

Атмосфера и масштабы предприятия вселяют гордость: не все промышленные гиганты Союза отправились в небытие. Завод работает и кормит не только владельцев, но и город: благодаря Северстали Череповец живет и развивается.

И о людях думают. Вот простая мелочь: во всех цехах, у каждой лестницы — плакаты с просьбой держаться за поручни. Казалось бы, никто их не читает, но травматизм снизился на 80%! Именно из этого складывается культура производства, а без нее качества не достичь.

  • Как сэкономить на кузовном ремонте, читайте тут.

Как и из чего получают сталь

Сталь — ковкий сплав железа с углеродом и другими легирующими элементами. Ее используют для изготовления металлопроката, посуды, медицинских инструментов, механизмов и различных деталей для промышленности. Сплав почти на 99 % состоит из железа. Углерод занимает от 0,1 до 2,14 % общей массы металла. Углерод, марганец, кремний, магний, фосфор и сера изменяют физико-химические свойства стали. Количество примесей определяет способы обработки металла и сферы его применения. Производство стали занимает весомую долю черной металлургии.

Из чего делают сталь?

Сталь — одна из самых востребованных в промышленности. Железо и углерод — основные компоненты для изготовления стали. Железо отвечает за пластичность и вязкость, а углерод — за твердость и прочность.

Получают деформируемый сплав железа, который поддается механической, термической, токарной и фрезерной обработке. Литьем, прессованием, резкой, шлифовкой и сверловкой добиваются нужной формы. Стальные изделия получают с точно выверенными размерами.

Железо и углерод занимают львиную долю от общей массы, но кроме них сталь всегда содержит другие примеси. Чистота по неметаллическим включениям определяет качества стали. Оксиды, сульфиды и вредные примеси делают ее хрупкой и непластичной. Их содержание снижают очисткой или вводят дополнительные компоненты, чтобы добиться нужных физико-химических свойств.

Примеси бывают полезными и вредными. Разделение условное и означает то, что элементы улучшают химический состав стали или ухудшают его свойства. К полезным элементам относятся марганец и кремний. Сера, фосфор, кислород, азот, водород — вредные примеси в составе стали.

Как влияют полезные и вредные примеси на свойства стали?

Эффект от различных элементов в сталях:

  • Марганец повышает прокаливаемость металла и нейтрализует вредное воздействие серы.
  • Кремний улучшает прочность и способствует раскислению сплава, удаляя оксиды и сульфиды.
  • Сера ухудшает пластичность и вязкость. Ее большое содержание проявляется красноломкостью: во время горячей обработки металл трескается в области красного или желтого каления.
  • Фосфор снижает пластичность и ударную вязкость сплава. Повышенное содержание фосфора приводит к хладноломкости: при механической обработке металл трескается или разламывается на куски.
  • Кислород и азот разрушают структуру стали, ухудшают вязкость и пластичность.
  • Водород приводит к хрупкости металла.

Чтобы удалить вредные примеси и неметаллические включения, жидкую сталь рафинируют. Используют комбинированное рафинирование в печи и вне печи. К примеру, раскисление, десульфурацию, дегазацию и другое. За счет очистки структура металла становится однородной, а качество возрастает.

Почему сталь сравнивают с чугуном?

Металлы похожи составом и способом изготовления. Чугун и сталь — сплавы железа, отличающиеся по концетрации углерода. В чугуне его свыше 2,14 % от общей массы, а в стали — не больше 2,14 %. Кроме процентной доли углерода в сплаве, они различны по свойствам. Чугун жаростойкий, теплоемкий, легкий и устойчивый к коррозии. А сталь прочнее, тверже и легче поддается механической обработке.

Плюсы и минусы стали

Сталь классифицируется по химическому составу и физическим свойствам. Разным маркам металла характерны свои преимущества и недостатки.

По сравнению с другими сплавами сталь отличается:

  • высокой прочностью;
  • твердостью;
  • устойчивостью к ударной, статической и динамической нагрузке;
  • пригодностью к сварке, резке и гибке заготовок механическим или ручным способом;
  • многолетней износостойкостью;
  • доступной стоимостью.

К минусам стали относится нестойкость к коррозии, тяжелый вес и намагничивание. Чтобы изделия из стали не портились, изготавливают нержавеющие марки. Чтобы получить устойчивый к коррозии сплав, добавляют хром. Также в составе могут присутствовать никель, молибден, титан, сера, фосфор.

Читайте также:
Как быстро разобрать электродвигатель на медь

Способы производства

Используют три метода изготовления стали, у каждого из которых свои достоинства и недостатки.

Мартеновские печи

Применяемые печи выкладывают из хромо-магнезитового кирпича. В них плавят сырье, окисляют сплав и удаляют посторонние включения. Печи могут быть использованы для изготовления углеродистых и легированных сталей. Они нагреваются до температуры +2000оС, позволяют добавлять различные примеси.

Кислородно-конвертерный метод

Это способ, получивший звание универсального. Его используют в производстве ферромагнитных сплавов. Выплавляют сталь из жидкого чугуна и шихты. Задействуют конвертер, облицованный огнеупорными материалами. Чтобы ускорить процесс окисления, через него подают струю воздуха.

Электродуговой способ

Принцип производства заключается в выделении тепла при горении электрической дуги. Тепловой режим обеспечивает плавление сырья под температурой +6000оС. Благодаря нему получаются высококачественные сплавы. У этой группы больше остальных хорошо раскисленных сталей.

Как получают сталь?

Производство стали состоит из нескольких этапов. Нарушения технологии влияют на свойства металла.

Расплавление шихты железных руд и нагрев ванны жидкого металла

На первом этапе плавят сырье на низкой температуре. При постепенном повышении температуры окисляется железо, кремний, марганец, фосфор. Затем повышают содержание оксида кальция, чтобы удалить фосфор.

Кипение ванны металла

Повышение температуры и интенсивное окисление железа путем введения руды, окалины и кислорода. Введение добавок позволяет получить оксид железа. С ним будет взаимодействовать углерод. Образующиеся пузырьки оксида углерода приводят сплав в кипящее состояние. К пузырькам прилипают сторонние примеси, тем самым очищая состав стали. Также удаляют сульфид железа, чтобы избавиться от серы.

Раскисление стали

В этом процессе восстанавливают оксид железа, который был растворен в жидком металле. Когда плавят шихту, кислород окисляет примеси, но в готовой стали он не нужен. Кислород понижает механические свойства стали, поэтому его нужно восстановить и удалить. Раскисляют стали ферромарганцем, ферросилицием, алюминием. Попадая в сплав, раскислители образуют оксиды низкой плотности, а затем отходят в шлак.

Как классифицируют сталь?

Физико-механические свойства и химический состав определяют виды металла. Сталь делят по составу, методу получения, структуре и примесям. Углеродистые и легированные стали различают по содержанию углерода и легирующим элементам. Сплавы обычного и высокого качества делят по содержанию примесей. Инструментальные, конструкционные и специальные стали делят в зависимости от назначения.

Углеродистые стали

Углеродистая сталь содержит углерод от 0,1 до 2,14 %. Количество углерода определяет группы стали:

  • Низкоуглеродистые содержат меньше 0,3 % углерода.
  • Среднеуглеродистые — от 0,3 до 0,7 %.
  • Высокоуглеродистые — более 0,7 до 2,14 %.

По процентному содержанию углерода определяют структуру сплава. Сталь с 0,8 % углерода сохраняет ферритно-перлитную структуру, с повышением меняет ее на перлит и цементит. Преобразования каждой фазы отражаются на прочностных характеристиках. Также углеродистые стали разделяют на группы А, Б, В, которые в свою очередь делятся на категории и марки.

Легированные

Сталь обогащают марганцем, хромом, никелем, молибденом и другими легирующими элементами. Количество примесей считают суммарно. В зависимости от их содержания различают:

  • низколегированные — до 2,5 % примесей;
  • среднелегированные — от 2,5 до 10 %;
  • высоколегированные — более 10 %.

Марганцем повышают прочность и твердость материала, хромом — стойкость к ударам, жаропрочность и устойчивость к коррозии. Никель делает сталь упругим и стойким к высоким температурам.

Марки стали отличаются сложной структурой. Обязательно указывают их состав в порядке убывания. Начинают с доли углерода, а затем прописывают меньшие доли легирующих добавок.

Спокойные, полуспокойные и кипящие

Стали классифицируют по степени раскисления. Чем меньше в сплаве газов, тем равномернее его структура и чище состав. Спокойные стали содержат меньше закиси железа, а кипящие — большое количество оксидов. Пузырьки оксида углерода ухудшают прочностные и пластичные свойства металла. Спокойные стали стабильны, их используют в изделиях ответственного назначения. Полуспокойные марки — среднепрочные, их задействуют как конструкционный материал. Кипящие разрушаются, трескаются и плохо поддаются сварке, поэтому и стоят меньше. Они разрешены в простых конструкциях.

Строительные

Низколегированные сплавы обычного качества. Они обладают удовлетворительными механическими свойствами, выдерживают статические и динамические нагрузки, пригодны к сварке.

Инструментальные

Высокоуглеродистые или высоколегированные сплавы. Их используют для изготовления штампов, режущего и измерительного инструмента. Разделяют соответственно на штамповые металлы, сплавы для режущего и измерительного инструмента. Названия группы зависит от назначения сталей. К примеру, штамповую сталь используют для изготовления инструментов, которыми будут обрабатывать металлы под давлением.

Конструкционные

Стали с низким содержанием марганца. Их делят на цементируемые, высокопрочные, автоматные, шарико-подшипниковые и другие. Используют для изготовления узлов механизмов или конструкций.

Стали специального назначения

Эти сплавы относятся к конструкционным сталям. Они бывают жаропрочными, жаростойкими, кислотоупорными, криогенными, электротехническими, парамагнитными, немагнитными.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
gmnu-nazarovo.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: