Что такое шихта в литейном производстве

Шихта

Ши́хта (нем. Schicht ) — смесь исходных материалов, а в некоторых случаях (например, при выплавке чугуна в доменной печи) и топлива в определённой пропорции, подлежащая переработке в металлургических, химических и других агрегатах.

Шихтами обычно называют исходные смеси, использующиеся в пирометаллургических или иных высокотемпературных (производства стекла, цемента, некоторых керамических материалов и изделий, коксование углей) процессах.

В состав металлургических шихт обычно входят исходное или обогащённое рудное сырьё, сырьё с флюсами и оборотными материалами. Шихты в чёрной металлургии (например, в доменном процессе) зачастую содержат и топливо, в то время как в цветной металлургии шихты, как правило, топлива не содержат.

Типичные требования к качеству шихты определяются обеспечением стабильности и воспроизводимости результатов процесса, в котором она используется:

  • постоянство химического состава;
  • однородность по химическому, минералогическому и гранулометрическому составу;
  • оптимальная крупность компонентов шихты;
  • оптимальная влажность.

  • Добавить иллюстрации.
  • Дополнить статью (статья слишком короткая либо содержит лишь словарное определение).
  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
  • Викифицировать статью.

Wikimedia Foundation . 2010 .

  • Библеистика
  • Левенгук

Полезное

Смотреть что такое “Шихта” в других словарях:

ШИХТА — (нем. Schicht). 1) смена рабочих на горных заводах. 2) рудная смесь, готовая для сплава. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ШИХТА нем. Schicht. а) Смена рабочих на горных заводах. b) Смесь руд с… … Словарь иностранных слов русского языка

шихта — (не рекомендуется шихта) … Словарь трудностей произношения и ударения в современном русском языке

ШИХТА — (немецкое Schicht), смесь исходных материалов, а в некоторых случаях (например, при выплавке чугуна в доменной печи) и топлива в определенной пропорции, подлежащая переработке в металлургических, химических и других агрегатах … Современная энциклопедия

ШИХТА — (нем. Schicht) смесь в определенной пропорции сырых материалов, а в некоторых случаях (напр., при выплавке чугуна в доменной печи) и топлива, подлежащая переработке в металлургических, химических и других агрегатах … Большой Энциклопедический словарь

ШИХТА — ШИХТА, шихты, жен. (нем. Schicht) (метал.). Смесь материалов (руда, металл, уголь, флюс и др.) в определенных пропорциях, идущая в плавку в металлургических печах. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

ШИХТА — ШИХТА, ы, жен. (спец.). Смесь сырых материалов (а иногда, напр. при выплавке чугуна, также и топлива), предназначенная для переработки в специальных агрегатах. Заложить шихту в плавильную печь. | прил. шихтовый, ая, ое и шихтовой, ая, ое.… … Толковый словарь Ожегова

ШИХТА — жен., нем. горное: смесь руд с плавнями, слой засыпки. | Одна смена рабочих, при работе сменами. Шихтплац и шахтарнак, место, где смешивают руду с плавнями. Шихтмейстер, звание горн. чиновника 13 или 14 класса. Толковый словарь Даля. В.И. Даль.… … Толковый словарь Даля

шихта — сущ., кол во синонимов: 8 • аглошихта (1) • германизм (176) • девушка (126) • … Словарь синонимов

шихта — Подготовленные в соответствии с шихтовкой плавки составляющие ее материалы. [ГОСТ 18169 86] Тематики оборудование для литья … Справочник технического переводчика

Шихта — – смесь различных компонентов, предназначенная для приготовления формовочной огнеупорной массы, шликера или расплава. [ГОСТ Р 52918 2008] Рубрика термина: Огнеупоры Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги … Энциклопедия терминов, определений и пояснений строительных материалов

Шихта — (немецкое Schicht), смесь исходных материалов, а в некоторых случаях (например, при выплавке чугуна в доменной печи) и топлива в определенной пропорции, подлежащая переработке в металлургических, химических и других агрегатах. … Иллюстрированный энциклопедический словарь

Что такое шихта — ее виды, роль в производстве, шихтарник

Шихта — это определенный набор компонентов, предназначенных для загрузки в топку домны или иного высокотемпературного оборудования с целью получения на выходе конечного продукта с определенными свойствами и химическим составом. Шихта в металлургии определяет состав и характеристики выплавляемого материала.

Само понятие «состав шихты» в промышленных масштабах носит обобщенный характер. Определяющим фактором для него служит конечный продукт металлургии. В качестве компонентов шихты могут выступать:

  • подготовленный к переработке лом;
  • обогащенная железная руда;
  • концентрат;
  • флюсы;
  • оборотные материалы (пыль, шлак, съем).

Флюсы применяются для защиты расплавленного металла от воздействия на него активных компонентов воздушной среды. Водород и кислород, проникающие в расплав, негативно влияют на его механические свойства, а также приводят к неоднородности химической среды в расплавленном металле. Подобное воздействие влечет за собой неравномерность показателя прочности по всей массе сплава. В качестве флюсов используют хлориды, карнолиты, фториды кальция или натрия.

Попадание шлаков в шихту происходит по причине загрязнения исходного сырья кремнеземом. Его взаимодействие в процессе плавки с чистым металлом приводит к формированию оксидов железа, которые и являются источником естественного шлака.

Виды шихт

Шихтовые материалы классифицируют в зависимости от разновидности получаемого на выходе сплава:

  • стали;
  • чугуна;
  • цветных металлов.

Компоненты, из которых формируют шихтовые материалы, оказывают прямое влияние на технические свойства конечного продукта.

Производство стали

Предназначенная для плавки стали шихта состоит из:

  • ферросплавов;
  • стального лома;
  • флюсов;
  • предельного коксового чугуна.

Шихтование требует грамотного подхода к расчетам и составлению смеси, подлежащей переработке в металлургических агрегатах. Выбор компонентов для шихты при производстве стали основан на нескольких основных правилах.

  1. Шихта для стали отличается низким содержанием легирующих элементов, и должна состоять только из известных компонентов. Использование шихты неизвестного происхождения неминуемо повлияет на точность состава полученного расплава с химической точки зрения.
  2. На поверхности шихты не должно быть признаков ржавчины и следов неметаллических примесей (кварца или остатков формовочной смеси).
  3. Компоненты ферросплавов предварительно проходят термическую обработку для исключения вероятности попадания в расплав влаги.
  4. Кислотный процесс выплавки (с применением в качестве огнеупоров печи шамотного, динасового кирпича или кварцевого песка) предполагает использование шихты с низким содержанием фосфора и серы.
  5. Шихтовые слитки, изготовленные из лома, повышают производительность сталеплавильных агрегатов, поскольку снижают угар металла и легирующих элементов.
Читайте также:
Что нужно для производства саморезов

Металлошихта, полученная путем восстановления железной руды газом или углеродом, используется для получения стали с минимальным количеством примесей. Основу металлической шихты составляет твердый или жидкий чугун, а также стальной лом. При этом марка лома должна соответствовать конечному продукту. Применение большого количества жидкого чугуна предполагает добавку в качестве окислителей окатышей или железной руды.

Важным компонентом, напрямую определяющим свойства стали, является тип используемого флюса. Обычно применяется известняк (содержащий не более 2% фосфора и серы), а также шамотный бой или плавиковый шпат.

Основным условием применения известняка в качестве флюса является отсутствие в нем влаги, что представляет собой серьезную проблему из-за способности данного материала активно впитывать влагу даже при краткосрочном хранении. Стандартами предписан определенный химический состав известняка. Он примерно на 55% состоит из кальция, содержит до 3,5% оксида марганца, до 1% кремнезема, до 0,4% оксида железа, до 0,15% серы, до 0,03% фосфора.

Технология плавки стали в мартеновских печах позволяет в качестве окислителя применять не только кислород, но и руду, содержащую железо, при условии, что в ее составе отсутствует фосфор и кремнезем.

Производство чугуна

Согласно статистике почти 90% выпускаемого в нашей стране чугуна приходится на технологию с применением особых печей-вагранок. Из-за избытка газов в такой рабочей среде шихта для выплавки чугуна должна иметь определенный состав.

Основными составляющими шихты на чугунолитейном производстве являются:

  • литейные и передельные чушковые чугуны;
  • ферросплавы;
  • отходы своего производства.

Особенностью литейных чугунов служит высокое содержание (до 3,5%) кремния. На основе этого показателя происходит деление материала на марки. ГОСТ 4832-80 четко определяет химический состав литейных чугунов. Кроме кремния в них может содержаться до 1,5% марганца, до 1,2% фосфора, до 0,05% серы. Вес одной чугунной чушки не должен быть больше 25 кг для удобства их перевозки и загрузки в печь.

Передельные литейные чугуны отличаются низким (до 1,3%) содержанием кремния в своем составе. Их использование улучшает показатель жидкотекучести и прочности, снижает вероятность образования отбела на поверхности металла. Минус их применения заключается в необходимости включения в состав шихты ферросплавов.

Ферросплавы необходимы для обогащения состава сплава кремнием и марганцем. Наиболее востребованы ферросплавы марок ФС75Л и ФС45. Маркировка указывает на содержание в их составе кремния (75% и 45% соответственно, остальная часть железо).

Примерно три четверти шихт в чугунолитейном производстве составляет лом, который делится на несколько категорий согласно ГОСТ2787-75. В качестве лома предприятия используют не только собственные отходы, но и покупное вторичное сырье. К кусковому лому применяются определенные требования относительно предельного веса и габаритных размеров.

Основным топливом для печей-вагранок служит шихта с преобладанием каменноугольного литейного кокса. С учетом процентного содержания серы и показателя зольности ее делят на три типа. Важным критерием является содержание влаги (не более 5% для любой из марок). Коксовая литейная шихта обладает большим удельным весом, что положительно влияет на степень теплоотдачи.

В роли флюсов чаще всего выступает известняк, более чем на половину состоящий из оксида кальция.

Производство сплавов цветных металлов

Шихта для выплавки цветных металлов содержит:

  • первичные металлы;
  • лом соответствующих сплавов;
  • отходы производства;
  • лигатуры.

Основной особенность выплавки цветных металлов является потребность в легировании тугоплавких металлов легкоплавкими, и наоборот.

Лидером в цветной металлургии являются бронзы, для производства которых необходимы:

  • свинец;
  • олово;
  • медь.

Вторым по степени востребованности продуктом цветной металлургии является алюминий. Повысить показатели прочности конечного материала позволяет обогащение применяемого вторичного сырья лигатурами мелкозернистого алюминия.

Подготовка шихты для коксования

Шихтование угля предполагает собой тщательное смешивание измельченного топлива различных марок. Состав смеси определяется техническими характеристиками конечного продукта, и формируется с учетом технического анализа характеристик различных видов угля (коксуемость, спекаемость, давление распирания, конечная усадка).

На практике редко применяют строго фиксированный состав смеси. К примеру, шихтовка металлургического кокса предполагает смешивание:

  • 10-15% угля кс для коксования;
  • 2-4% спекающаяся добавка;
  • 45-55% газовый;
  • 17-25% жирный;
  • остальное составляет отощенно-спекающийся уголь.

Повысить спекаемость поможет ввод в качестве органической добавки каменноугольного пека.

Шихтарник

При больших объемах перерабатываемых материалов на металлургическом производстве для приемки, проверки, хранения сырья и подготовки шихты используют рудные склады.

Современное производство оснащено механизированными шихтарниками, позволяющими ускорить все этапы подготовки шихты. Готовую шихту непосредственно перед обжигом подсушивают в специальных барабанах до уровня влажности в пределах 5-6%.

Для перемещения шихты в плавильные печи применяется специальное оборудование. Загрузчик шихты представляет собой сложное аппаратное оснащение, особенности конструкции которого зависят от типа плавильного оборудования и способа загрузки шихты.

Шихтовые материалы для получения стали в дуговых печах

Шихтовые материалы

Для получения стали в электропечах необходимы следующие шихтовые материалы: металлическая часть, шлакообразующие, окис­лители, добавочные материалы (раскислители и легирующие) и науглероживатели.

Металлическая часть

Основу шихты для электро­печей составляет металлический лом: на одну тонну выплавляемой в электропечах стали в среднем расходуется около 950 кг лома. Примерно треть этого количества составляют брак, литейные от­ходы, обрезь слитков, отходы при прокатке и ковке, а также стружка от обдирки слитков, т. е. собственные отходы металлургических за­водов. Остальная часть складывается из отходов, возвращаемых заводами-потребителями, направляемого в переплав изношенного и устаревшего оборудования и инструмента и лома, собранного отделениями Вторчермета. Кроме того, в ограниченных количествах используется специально выплавляемая шихтовая заготовка — мяг­кое железо, а также передельный чугун и металлизованные ока­тыши.

Читайте также:
Штанга для лазерного нивелира своими руками

Металлический лом делится на две категории: группа нелегиро­ванных (А) и легированных (Б) отходов.

Нелегированный (углеродистый) лом не должен быть загрязнен цветными металлами (свинцом, цинком, оловом и др.), особенно ни­келем, медью и мышьяком, которые практически полностью пере­ходят из шихты в металл и могут оказать существенное влияние на его свойства. Нежелательно также, чтобы в углеродистых отходах содержалось фосфора более 0,05%, так как удаление таких коли­честв фосфора потребует продолжительного окислительного периода.

Поэтому металлический лом должен быть освобожден от лома цвет­ных металлов и рассортирован по происхождению. Знание проис­хождения лома позволяет примерно оценить его состав и более пра­вильно использовать его.

На заводах качественных сталей в электросталеплавильных цехах выплавляют сотни различных марок легированной стали. Часть из них содержит элементы, не поддающиеся окислению и трудно уда­ляемые при пользовании обычными процессами. Отходы, содержащие такие элементы, могут быть использованы при выплавке стали опре­деленного сортамента. Отходы легированных сталей должны быть рассортированы в группы, близкие по составу марок, и храниться отдельно от других отходов. Отходы некоторых наиболее сложно ле­гированных марок следует хранить помарочно.

Металлический лом должен иметь определенные габариты. Мел­кий лом, как правило, более окислен, замусорен и загрязнен маслом. Значительная окисленность лома не позволяет точно оценить долю угара металла, что чревато непопаданием в заданный химический состав готовой плавки. Разложение в зоне дуг ржавчины (гидрата окиси железа) и масла приводит к появлению в атмосфере печи ато­марного водорода, интенсивно поглощаемого металлом.

Малая насыпная масса мелкого лома не позволяет завалить в печь всю шихту в один прием, вследствие чего, после расплавления первой порции шихты, приходится осуществлять подвалку. Это снижает производительность печи и увеличивает потери тепла.

Особые заботы доставляет переплав стружки. Длинная витая стружка затрудняет загрузку; как правило, она сильно загрязнена маслом и уже на месте получения смешивается с отходами стали дру­гих марок, а часто и со стружкой цветных металлов. По этим при­чинам стружку следует переплавлять на заводах Вторчермета и элек­тросталеплавильным цехам поставлять изготовленные из нее пас­портные болванки с известным химическим составом. Стружка, по­ставляемая непосредственно в электросталеплавильные цеха, должна быть спрессована и обожжена. Дополнительные затраты на под­готовку стружки вполне окупаются экономией, получаемой при ис­пользовании доброкачественной шихты.

Нежелательно, чтобы в шихте были чрезмерно крупные куски — бракованные слитки, недоливки и т. п. В дуговой печи можно рас­плавлять крупногабаритный лом, но продолжительность плавления при этом увеличивается, длительное время приходится работать на высокой мощности, что отрицательно сказывается на стойкости фу­теровки. По этой причине максимальная масса отдельных кусков не должна превышать одной пятидесятой массы всей садки.

Для производства стали некоторых марок в состав шихты вводят специально выплавленную предварительно заготовку. Чаще всего она по своему составу представляет собой низкоуглеродистую сталь с ограниченным содержанием углерода, фосфора и серы, т. е. мягкое железо, полученное методом плавки на свежей шихте.

Мягкое железо должно быть в менее крупных кусках, чем леги­рованные отходы, так как в связи с низким содержанием углерода оно плавится при более высокой температуре. Поэтому слитки мяг­кого железа прокатывают на заготовку, которую затем рубят на куски определенного размера.

Мягкое железо намного дороже углеродистого лома и его исполь­зование отрицательно сказывается на себестоимости стали. Исполь­зование в шихте мягкого железа может быть оправдано только серьез­ными технологическими затруднениями выплавки стали нужной марки.

Следует отметить, что для электропечной плавки характерен постоянно наблюдаемый недостаток качественного лома. В связи с этим в течение длительного времени изыскивают материалы, ко­торые могли бы заменить лом. В частности, неоднократно предпри­нимались попытки заменить часть лома передельным чугуном. Однако все эти попытки заканчивались, как правило, неудачно.

Передел чугуна в сталь заключается в окислении находящихся в нем в избыточных количествах углерода, кремния, фосфора. Элек­тропечи, плохо приспособлены для про­ведения окислительных процессов, поэтому использование их для передела значительного количества чугуна нецелесообразно.

Обнадеживающие результаты получены при использовании в шихте электропечей полупродукта — предварительно продутого в реакторе чугуна. Однако появление и совершенствование кисло­родно-конвертерного процесса сделали более целесообразным пере­работку чугуна в сталь монопроцессом в конвертере. В последние годы проводятся интенсивные всесторонние исследо­вания плавки стали в электропечах с использованием высокометаллизированных окатышей (90—95% общ, 85—90% мет). По­строены промышленные комплексы для работы с непрерывной за­грузкой окатышей в дуговую печь и с непрерывной разливкой ме­талла. Использование чистых по сере, фосфору и сопутствующим примесям металлизованных окатышей позволяет при обычном качестве шихты выплавлять, применяя этот процесс, качественные стали.

Плавка металлизированных окатышей в электропечах (бездоменный процесс) при успешном решении проблемы эффективного вос­становления окатышей может оказаться более эффективной по всем показателям, чем выплавка стали из чугуна в конвертерах.

Шлакообразующие

При выплавке стали в основных дуговых печах для образования основного шлака используют из­весть, известняк, плавиковый шпат, шамотный бой и песок. В кислых печах шлак наводят из песка, шамотного боя и извести.

Наиболее важной составляющей шлаковых смесей является из­весть, которую получают обжигом известняка в шахтных печах при температуре 1100— 1300°С. При обжиге углекислый кальций из­ вестняка разлагается на окись кальция и углекислый газ СаС03 → CaO + СО2.

Химический состав обожженной извести приведен в таблице 1.

Содержание серы в известняке в большинстве случаев низкое, однако оно возрастает после обжига за счет серы топлива. Повышенное со­держание серы в шлаке затрудняет процесс десульфурации металла.

Читайте также:
Шайбы для споттера своими руками

Содержание других окислов в извести ограничивают по следующим соображениям: кремнезема, чтобы при заданной основности шлака количество его было меньше; окиси магния, чтобы шлак был более жидкотекучим и активным; окислов железа, чтобы не затруднять процесс десульфурации.

Для выплавки высококачественной стали используют только свежеобожженную известь. При хранении известь интенсивно погло­щает влагу из воздуха с образованием гидроокиси кальция [СаО + Н2О → Са (ОН)2], которая рассыпается в порошок. Влага, вне­сенная известью, в печи разлагается на кислород и водород, вызывая обогащение стали водородом. Поэтому применение пылеватой из­вести, так называемой «пушонки», в электропечах совершенно не­ допустимо.

Вместо извести в окислительный период можно пользоваться не­ обожженным известняком. Применяют известняк, содержащий не менее 97% СаСО3 (не менее 54% СаО). Известняк не гигроскопичен, его можно длительное время хранить. Разложение углекислого кальция в электропечи вызывает выделение пузырьков СО2, которые обеспечивают перемешивание металла и шлака и способствуют дега­зации металла. Окислительный углекислый газ окисляет примеси в металле, в частности углерод.

Отрицательной стороной применения известняка вместо извести является дополнительная затрата электроэнергии на разложение карбоната кальция.

Для разжижения высокоосновных шлаков применяют плавико­вый шпат, песок и шамотный бой. Особенно сильно понижает его вязкость CaF2. К тому же использование CaF2 позволяет разжижать высокоосновные шлаки без уменьшения их основ­ности, что чрезвычайно важно для эффективного удаления серы.

Поэтому широкое применение для наводки шлака получил плавико­вый шпат, который в случае его использования при электроплавке должен содержать 90—95% CaF2, не более 3,0% SiO2 и не более 0,2 % S.

Песок также понижает температуру плавления основных шлаков, но при этом понижается и основность шлака. Поэтому в основных печах песок находит ограниченное применение, в то время как в кис­лых печах он является главным шлакообразующим материалом.

Основное требование, предъявляемое к песку, — высокое (минимум 95%) содержание SiO2.

При выплавке нержавеющих сталей и для разжижения густых магнезиальных шлаков иногда используют бой шамотных огнеупоров, содержащих примерно 60% SiO2 и 35% Аl2O3.

Окислители

Для интенсификации окислительных про­цессов в металл необходимо вводить кислород. Источниками кисло­рода служат железная руда, окалина и агломерат. Широкое распро­странение получила продувка металла газообразным кислородом.

Железную руду применяют при выплавке стали методом полного окисления. Присадка руды небольшими порциями обеспечивает дли­тельное равномерное кипение металла без повышения его темпера­туры, так как присаживаемая руда постоянно охлаждает металл. Это имеет особое значение для эффективного удаления фосфора.

Руду используют в завалку и в окислительный период. Руда, присаживаемая в окислительный период через шлак, должна быть в кусках определенного размера, желательно 50— 100 мм в диаметре.

Мелкая руда растворяется в шлаке, а крупные куски вызывают бурное вспенивание металла и шлака. Кроме соответствия требованиям, касающимся определенного раз­мера кусков, руда должна удовлетворять и требованиям по хими­ческому составу: в ней должно содержаться много окислов железа и мало кремнезема, серы и фосфора (таблица 1). Наиболее богатой яв­ляется криворожская руда, но в ней содержится довольно много фосфора и серы. Чистая по сере и фосфору бакальская руда харак­теризуется повышенным содержанием пустой породы, что вызывает понижение основности шлака, увеличение его количества и требует дополнительных затрат электроэнергии.

Иногда вместо руды используют заменители — агломерат и ока­лину от проката. Окалина от проката углеродистых сталей является наиболее чистым окислителем, но вследствие малого удельного веса она задерживается в шлаке. Необходимо учитывать также, что про­катная и кузнечная окалина может содержать легирующие элементы, которые целесообразно использовать.

Для интенсификации окисления углерода во время окислитель­ного периода плавки на свежей шихте, а также для быстрого повыше­ния температуры металла, окисления избыточного углерода и со­путствующих примесей при переплаве легированных отходов широко применяют продувку металла кислородом. Газообразный кислород чистотой около 99,5% подают в ванну под давлением 1—2 МПа (10— 12 ат).

Основное требование, предъявляемое к газообразному кислороду, низкое содержание влаги (не более 1 г/м 3 ). Поэтому перед продув­кой кислород должен быть осушен в специальных поглотителях влаги.

Раскислители и легирующие

Для раскисления стали и ее легирования раскислители и легирующие элементы при­меняют в чистом виде или в виде сплавов с железом или друг с дру­гом.

Наибольшее распространение для раскисления и легирования стали получили металлические алюминий, никель, хром, марганец, молибден, кобальт и титан, ферросплавы — ферросилиций, ферромарганец, феррохром, ферровольфрам, феррованадий, ферромолиб­ден, ферротитан, феррониобий, ферробор и другие, а также комплекс­ные сплавы— силикомарганец, силикокальций, силикоцирконий, силикоалюминий, сплавы алюминия, марганца и кремния, кремния, кальция и алюминия и другие.

Сплавы, применяемые в качестве раскислителей и легирующих, должны удовлетворять ряду требований:

  1. Содержание основного легирующего элемента в сплаве должно быть максимальным. При низком содержании легирующих элементов увеличивается масса присадки, что удлиняет время ее проплавления и ведет к увеличению расхода электроэнергии и снижению произво­дительности печи. Исключение составляют ферросплавы тугоплав­ких металлов — ферровольфрама и ферромолибдена, для более быстрого растворения которых желательно иметь более низкое их содержание в сплаве.
  2. Сплавы должны быть чистыми от вредных для стали примесей, шлаковых включений и газов. Это особенно важно, потому что значительную часть их присаживают в печь лишь к концу плавки, когда рафинирование ванны уже закончено.
  3. Куски сплавов должны быть определенного габарита. Наличие крупных кусков удлиняет время их растворения, затрудняет точ­ность взвешивания и может быть причиной повышенного расхода сплава.

Науглероживатели

К числу науглероживателей при­надлежат материалы, содержащие углерод и используемые для уве­личения содержания углерода в металле. Они входят либо в состав шихты, либо их вводят в жидкий металл. Для науглероживания в электросталеплавильных цехах используют главным образом кокс и электродный бой, в редких случаях (вследствие дефицита) — дре­весный уголь и сажу.

Читайте также:
Шлифовка ГБЦ своими руками

Основное требование, предъявляемое к науглероживателям, за­ключается в том, что они должны быть чистыми по вредным приме­сям (главным образом иметь низкое содержание серы) и вносить мало золы.

Шихтовые материалы, применяемые в литейном производстве, способы подготовки их к плавке

металл сплав коррозия литейный

Шихтовыми материалами или шихтой называют металлические и неметаллические материалы, используемые для приготовления литейных сплавов. К металлическим относятся доменные чугуны, лом черных и цветных металлов, возврат литейных и механических цехов (бракованные детали и отливки, литники, прибыли, брикитированная стружка и др.) и легирующие элементы (хром, никель, молибден, титан и др.), вводимые в шихту для получения отливок с заданными механическими свойствами.

К неметаллической части шихты относятся флюсы, применяемые для образования и удаления из жидкого сплава легкоплавких шлаков.

Для приготовления расплава с требуемыми свойствами и, следовательно, для получения качественной отливки выполняют контроль шихтовых материалов на соответствие их требованиям стандартов и технических условий.

Для литейных алюминиевых сплавов в качестве шихты используют металлы (алюминий, бериллий, ванадий, кремний, кальций, титан, литий и др.), а также лигатуры. Лигатуры представляют собой сплав алюминия с легирующим элементом, вводимым в требуемом количестве.

В состав шихты магниевых сплавов кроме первичных металлов и сплавов в чушках, возврата и лигатуры, вводят неметаллические легирующие добавки в виде солей (хлористого марганца, фторбериллата натрия, фторцирконата калия), флюсов, модификаторов (магнезит, мел, углекислый газ, гексахлорэтан). Флюсы при плавке магниевых сплавов предупреждают также окисление и возгорание твердой шихты.

При подготовке шихты для медных сплавов сыпучую и витую стружку после дробления подвергают центрифугированию с целью удалить влагу, эмульсию, масло. При центрифугировании стружку промывают раствором, содержащим 6% жидкого стекла, 4% фосфорнокислого калия, 0,5% хромовокислого калия, 1% едкого натра, 88,5% воды. Затем стружку просушивают при 200–300° С, удаляют из нее при помощи магнитного сепаратора мелкие железные включения и производят ее брикетирование.

Крупные шихтовые материалы (катоды, чушки, возврат и др.) разрезают или разбивают на более мелкие части. Используемые катодные листы тщательно очищают от остатков электролита.

  • 1. все поступающие на завод шихтовые материалы подвергаются контролю ОТК внешней приемки на соответствие технической документации, независимо от наличия сертификата поставщика. Без такой проверки запуск материалов в производство не разрешается;
  • 2. при наличии отклонений от технической документации или при необходимости замены марки материала на другую составляется акт замены материала;
  • 3. разгрузка шихтовых материалов в складе шихты допускается только при наличии сертификата, письменного подтверждения ОТК внешней приемки, марки поступившего материала ;
  • 4. складирование шихтовых материалов должно производится по маркам в специальные расходные бункера, с укрепленными табличками с указанием материала ;
  • 5. разгрузка должна производится мостовым краном 25т, снабженным магнитной шайбой;

Технические требования к шихтовым материалам :

  • 1. Лом стальной № 1 – 1А ГОСТ 2787-75:
    • Ш состав: кусковые лом и отходы, не допускаются проволока и изделия из проволоки;
    • Ш степень чистоты: не допускается наличие лома и отходов цветных металлов. Углеродистые лом и отходы не должны смешиваться с легированными. Металл не должен быть горелым, проржавленным, налет ржавчины не допускается. Засоренность безвредными примесями (дерево, ветошь, песок и пр.) не должна превышать 2% по массе партии;
    • Ш габариты и масса: размеры куска должны быть не более 300x200x150 мм. Толщина металла должна быть не менее 6 мм. Масса куска должна быть не менее 0,5-^20 кг.
    • Ш проржавленный металл отбирается и очищается в галтовочном барабане. Крупный стальной лом разделывают с помощью газовой горелки.

    стальной лом транспортируют железнодорожным транспортом.

    • 2. Ферросилиций ФС-45Л-4 ГОСТ 1415-78:
      • Ш поступает дробленый, размер куска не более 10. 50 мм;
      • Ш химический состав проверяет лаборатория по ГОСТ 1415-78;
      • Ш поверхность кусков не должна иметь резко выраженных включений шлака и других инородных материалов ;
      • Ш ферросилиций транспортируют в специализированных контейнерах автомобильным транспортом, попадание влаги должно быть исключено.
    • 3. Ферромарганец ФМН-75 ГОСТ 4755-80:
      • Ш поступает дробленый, размер куска не более 20 – 50 мм;
      • Ш химический состав проверяет лаборатория по ГОСТ 4755-80;
      • Ш поверхность кусков не должна иметь инородных включений. Допускаются следы противопригарных материалов (известь, песок), включения шлака (0,5% массы партии);
      • Ш ферромарганец транспортируют в специализированных контейнерах
      • Ш автомобильным транспортом.
    • 4. Возврат производства (литники, прибыли, брак): для использования возврат производства разделывать на куски весом не более 20 кг и с максимальными габаритами не более 300 мм, очищенный от вредных примесей (ветошь, дерево, земля, песок, окалина и пр.). Прибыли от литников должны быть отделены. Проржавленный металл очистить в галтовочном барабане. Налет ржавчины не допускается.

    Все шихтовые материалы перед загрузкой в тигель должны быть сухими, очищенными от ржавчины. Габаритные размеры кусков шихты должны обеспечить хорошую плотность садки и отсутствие зазоров между ними и стенками тигля.

    Влияние состава шихты на качество стали 25Л. «Литейное производство», 2004, №6

    Производство стали сегодня осуществляется в основном из отработанных стальных изделий и передельного чугуна. Сталь представляет собой сплав железа и углерода, последнего в котором содержится от 0,1 до 2,14%. Превышение содержания углерода в сплаве приведет к тому, что он станет слишком хрупким. Суть процесса производства стали, в составе которой содержится гораздо меньшее количество углерода и примесей, по сравнению с чугуном, состоит в том, чтобы в процессе плавки перевести эти примеси в шлак и газы, подвергнуть их принудительному окислению.


    Процесс производства стали

    Особенности процесса

    Производство стали, осуществляемое в сталеплавильных печах, предполагает взаимодействие железа с кислородом, в процессе которого металл окисляется. Окислению также подвергаются углерод, фосфор, кремний и марганец, содержащиеся в передельном чугуне. Окисление данных примесей происходит за счет того, что оксид железа, образующийся в расплавленной ванне металла, отдает кислород более активным примесям, тем самым окисляя их.

    Производство стали предполагает прохождение трех стадий, каждая из которых имеет свое значение. Рассмотрим их подробнее.

    На данном этапе расплавляется шихта и формируется ванна из расплавленного металла, в которой железо, окисляясь, окисляет примеси, содержащиеся в чугуне (фосфор, кремний, марганец). В процессе этого этапа производства из сплава необходимо удалить фосфор, что достигается за счет содержания в шлаке расплавленного оксида кальция. При соблюдении таких условий производства фосфорный ангидрид (Р2О5) создает с оксидом железа (FeO) неустойчивое соединение, которое при взаимодействии с более сильным основанием — оксидом кальция (CaO) — распадается, и фосфорный ангидрид превращается в шлак.

    Чтобы производство стали сопровождалось удалением из ванны расплавленного металла фосфора, необходима не слишком высокая температура и содержание в шлаке оксида железа. Чтобы удовлетворить эти требования, в расплав добавляют окалину и железную руду, которые и формируют в ванне расплавленного металла железистый шлак. Содержащий высокое количество фосфора шлак, формирующийся на поверхности ванны расплавленного металла, удаляется, а вместо него в расплав добавляются новые порции оксида кальция.

    Кипение ванны расплавленного металла

    Дальнейший процесс производства стали сопровождается кипением ванны расплавленного металла. Такой процесс активизируется с повышением температуры. Он сопровождается интенсивным окислением углерода, происходящим при поглощении тепла.


    Процесс производства стали в электропечах

    Производство стали невозможно без окисления излишков углерода, такой процесс запускают при помощи добавления в ванну расплавленного металла окалины или вдувания в нее чистого кислорода. Углерод, взаимодействуя с оксидом железа, выделяет пузырьки оксида углерода, что создает эффект кипения ванны, в процессе которого в ней снижается количество углерода, а температура стабилизируется. Кроме того, к всплывающим пузырькам оксида углерода прилипают неметаллические примеси, что способствует уменьшению их количества в расплавленном металле и приводит к значительному улучшению его качества.

    На данной стадии производства из сплава также удаляется сера, присутствующая в нем в форме сульфида железа (FeS). При повышении температуры шлака сульфид железа растворяется в нем и вступает в реакцию с оксидом кальция (CaO). В результате такого взаимодействия образовывается соединение CaS, которое растворяется в шлаке, но раствориться в железе не может.

    Добавление в расплавленный металл кислорода способствует не только удалению из него вредных примесей, но и увеличению содержания данного элемента в стали, что приводит к ухудшению ее качественных характеристик.

    Чтобы уменьшить количество кислорода в сплаве, выплавка стали предполагает осуществление процесса раскисления, который может выполняться диффузионным и осаждающим методом.

    Диффузионное раскисление предполагает введение в шлак расплавленного металла ферросилиция, ферромарганца и алюминия. Такие добавки, восстанавливая оксид железа, снижают его количество в шлаке. В результате растворенный в сплаве оксид железа переходит в шлак, распадается в нем, высвобождая железо, которое возвращается в расплав, а высвобожденные оксиды остаются в шлаке.

    Производство стали с осаждающим раскислением осуществляется путем введения в расплав ферросилиция, ферромарганца и алюминия. Благодаря наличию в своем составе веществ, обладающих большим сродством к кислороду, чем железо, такие элементы образуют соединения с кислородом, который, отличаясь невысокой плотностью, выводится в шлак.


    Производство стали в мартеновских печах

    Регулируя уровень раскисления, можно получать кипящую сталь, которая не полностью раскислена в процессе плавки. Окончательное раскисление такой стали происходит при затвердевании слитка в изложнице, где в кристаллизующемся металле продолжается взаимодействие углерода и оксида железа. Оксид углерода, который образуется в результате такого взаимодействия, выводится из стали в виде пузырьков, также содержащих азот и водород. Полученная таким образом кипящая сталь, содержит незначительное количество металлических включений, что придает ей высокую пластичность.

    Производство сталей может быть направлено на получение материалов следующего типа:

    • спокойных, которые получаются, если в ковше и печи процесс раскисления полностью завершен;
    • полуспокойных, которые по степени раскисления находятся между спокойными и кипящими сталями; именно такие стали раскисляются и в ковше, и в изложнице, где в них продолжается взаимодействие углерода и оксида железа.

    Если производство стали предполагает введение в расплав чистых металлов или ферросплавов, то в результате получаются легированные сплавы железа с углеродом. Если в стали данной категории необходимо добавить элементы, которые имеют меньшее сродство к кислороду, чем железо (кобальт, никель, медь, молибден), то их вводят в процессе плавки, не опасаясь за то, что они окислятся. Если же легирующие элементы, которые необходимо добавить в сталь, имеют большее сродство к кислороду, чем железо (марганец, кремний, хром, алюминий, титан, ванадий), то их вводят в металл уже после его полного раскисления (на окончательном этапе плавки или в ковш).

    Технология сварки стали с низким содержанием углерода

    В составе инструментальной стали присутствует до 1 % углерода, что определяет ее твердость и прочность. В то же время износостойкость металла достаточно низкая, поэтому из него изготавливают только инструменты. А невысокая закупочная цена обеспечивает прибыльность производства.

    Технология сварки стали этого типа предполагает использование инвертора и специально предназначенного электрода. Для обработки подходят стержни УОНИ-13/НЖ/20Х13 и сварочный инвертор.

    Рекомендовано к прочтению

    • Резка меди лазером: преимущества и недостатки технологии
    • Виды резки металла: промышленное применение
    • Металлообработка по чертежам: удобно и выгодно

    Области металлургии

    В металлургии различают несколько областей:

    • Чёрную. Она включает в себя производство таких металлов как чугун, сталь и железо. Это чёрные металлы, производство которых требует много материалов, в том числе и каменный уголь;
    • Цветную. Это добыча разных руд и процесс их дальнейшего обогащения. Цветные металлы обрабатывают разными способами, получая из них новые сплавы;
    • Плазменную. Из руд извлекают металлы, а затем подвергают их обработке. Для обработки применяют мощные плазменные реакторы и печи, а также технологию плазменного нагрева, чтобы придать процессу плавления максимальную интенсивность;
    • Порошковую. Задача порошковой металлургии — получение из металлов разных порошков, которые применяют для изготовления изделий. Также в этой отрасли используют композитные технологии, соединяя металлы и неметаллы.

    История металлургии

    Металлургия начала развиваться ещё в эпоху каменного века. Есть несколько исторических вех её развития. Согласно археологическим раскопкам, наши древние предки уже в 6 в. до н.э. активно использовали железо, попавшее на Землю в составе метеоритов. Люди постепенно осваивали обработку серебра и олова.

    В эпоху бронзового века (5500 лет назад) люди научились получать из горных пород олово и медь, из которых у них случайно вышла бронза. Во времена железного века (1200 лет назад) из руды стали извлекать железо. Его главными добытчиками считают древних римлян, преуспевших в искусстве ковки, а четь изобретений технологий металлообработки и добычи принадлежит китайцам.

    Независимо от того, в каком уголке земного шара развивалась металлургия, все люди пользовались классическим сыродутным методом, с помощью которого осуществлялась выплавка меди и свинца.

    Далее последовала эпоха, называемая этапом цементации. Железо стали закаливать, оно превратилось в металл гораздо прочнее бронзы. Однако процесс освоения людьми этой технологии занял около тысячи лет.

    В период Средневековья высота плавильных печей уже составляла три метра, а работали они с применением энергии, получаемой через воду. Эти печи назывались штукофенами и стали стимулом для того, чтобы чёрная металлургия вышла на очередной виток развития. В эпоху Возрождения появились новые виды печей, которые назвали блауофенами. После них появились доменные печи громадных размеров. Они работали 24 часа в сутки, выпуская до полутора тысяч тонн чугуна отменного качества.

    В конце XIX, начале XX века появились новые технологии производства металлов. Речь идёт о бессемеровском, томасовском и, наконец, мартеновском способах. Они помогли людям в разы увеличить производственные объёмы с выпуском металлов от шести тонн в час. Спустя 50 лет появились безостановочная разливка стали и метод кислородного дутья. На современном этапе учёные активно развивают разные технологии обогащения руд и производства стали в электрических печах.

    Мартеновский способ

    Мартеновский способ на протяжении большей части 20-го века составлял основную часть обработки всей стали, изготовленной в мире. Уильям Сименс в 1860-х годах искал средства повышения температуры в металлургической печи, воскресив старое предложение об использовании отработанного тепла, выделяемого печью. Он нагревал кирпич до высокой температуры, затем использовал тот же путь для ввода воздуха в печь. Предварительно нагретый воздух значительно увеличивал температуру пламени.

    Природный газ или распыленные тяжелые масла используются в качестве топлива; воздух и топливо нагреваются до сгорания. Печь загружается жидким доменным чугуном и стальным ломом вместе с железной рудой, известняком, доломитом и флюсами.

    Сама печь изготовлена из высокоогнеупорных материалов, таких как магнезитовый кирпич для очагов. Вес мартеновских печей достигает 600 тонн, и их обычно устанавливают группами, так что массивное вспомогательное оборудование, необходимое для зарядки печей и обработки жидкой стали, может быть эффективно использовано.

    Хотя мартеновский процесс практически полностью заменен в большинстве промышленно развитых стран основным кислородным процессом и электродуговой печью, им изготавливают около 1/6 всей стали, произведенной во всем мире.

    Достоинства и недостатки данного способа

    К преимуществам относят простоту использования и легкость в получении легированной стали с примесью различных добавок, которые придают материалу различные специализированные свойства. Необходимые добавки и сплавы добавляют непосредственно перед окончанием выплавки.

    К недостаткам можно отнести сниженную экономичность, по сравнению с кислородно-конверторным способом. Также качество стали более низкое, по сравнению с остальными методами выплавки металла.

    Технологии сварки разнородных типов стали одного структурного класса

    Сварка разных типов перлитной стали, разница в которых заключается в степени легирования, выполняется с помощью электродов, используемых для металлов с меньшей степенью легирования, при отсутствии дополнительных требований к прочности соединений, жаропрочности, коррозионной устойчивости, которые свойственны более легированным сталям. При этом технология предполагает выбор режимов и температуры сварки, применяемых при работе с более легированными металлами.

    Если подогрев невозможен, то выполняется наплавка кромок с использованием более легированного материала, подогреваемого электродами типа Э42А. При этом наплавленный слой должен иметь такую толщину, которая не позволит более легированному металлу нагреться до температур Ac1, т. е. не допустить создания условий для закалки.

    Работая с различными сочетаниями высокохромистых мартенситных (12 % Cr), ферритных (28 % Cr) и ферритно-аустенитных металлов типа Х21Н5, необходимо выбирать такую технологию сварки сталей, при которой не будут образовываться холодные трещины и хрупкие участков в сварном шве. Режим подогрева выбирают для самого закаливающегося металла с недопущением полного охлаждения заготовок. Это возможно при использовании сварочных материалов ферритно-аустенитного класса, сварки с минимальной погонной энергией, поскольку металлы с высоким содержанием хрома подвержены росту зерна, являющегося причиной образования хрупкости места шва.

    После того как термообработка завершена, заготовку необходимо быстро охладить, чтобы избежать хрупкости, возникающей при +475 °С. Можно также использовать для работы аустенитные электроды. Но в таком случае при термообработке нельзя полностью исключить сварочные напряжения, вызванные разницей в коэффициентах линейного расширения шва и основного металла.

    Технология сварки разных типов конструкционной стали

    Более востребованной является конструкционная сталь, она используется для производства как мелких металлических деталей, так и габаритных станков. В эту категорию входят стали таких марок, как 40х, 30хгса, 35хгса и др.

    В составе конструкционной стали присутствуют различные примеси, включая серу и фосфор. Большее количество этих компонентов уменьшает надежность материала.

    Конструкционные типы стали делят на несколько групп:

    • обыкновенная;
    • качественная;
    • высококачественная;
    • особо высококачественная.

    В последней группе присутствует минимальное количество примесей, поэтому сталь является наиболее прочной и качественной. Обычная конструкционная сталь, напротив, содержит высокий процент примесей, поэтому долговечностью не отличается. В названных группах существует деление на подгруппы в зависимости от присутствия в составе дополнительных химических элементов.

    Технология сварки двухслойных (плакированных) видов стали

    За счет двухслойной стали снижается использование высоколегированных материалов, при этом работоспособность конструкций не снижается. Из таких металлов изготавливают оборудование, эксплуатируемое в коррозионной среде.

    Облицовочный слой толщиной до 12 мм, устойчивый к коррозии и контактирующий с агрессивной средой, выполняется из следующих металлов:

    • высоколегированных хромоникелевых аустенитных (12Х18Н10Т, 08Х18Н10Т, 12Х18Н12Т, 08Х18Н12Б и др.);
    • хромистых ферритных;
    • мартенситно-ферритных (08X13, 12X13 и др.).

    Основной слой, толщина которого достигает 150 мм, более устойчив к силовым нагрузкам. Для его изготовления используются углеродистые низколегированные металлы (Ст3, 20К, 15ХМ и др.). Сварные соединения при этом должны иметь:

    • Однородность облицовочного слоя с высокой коррозионной стойкостью сварного шва.
    • Отсутствие комплексных сплавов с низкими механическими характеристиками в месте соединения облицовочного и основного слоев. Для этого необходимо использовать подходящие материалы и технологию сварки сталей, разделывать кромки и последовательно проводить работы.

    Описанию основных типов и конструктивных элементов формы подготовки кромок в соответствии с технологией и способами сварки посвящен ГОСТ 16098-80. Сварка слоев выполняется раздельно с применением различных сварочных материалов. Последним обрабатывается облицовочный слой, чтобы не допустить его повторного нагрева. Обработка основного покрытия осуществляется в первую очередь. Для работы используются подходящие сварочные проволоки, флюсы, электроды и пр.

    Электросталеплавильный способ

    Современный способ выплавки стали с использованием собственных запасов представляет собой печь, которая нагревает заряженный материал с помощью электрической дуги. Промышленные дуговые печи имеют размеры от небольших единиц грузоподъемностью около одной тонны (используются в литейных цехах для производства чугунных изделий) до 400 тонн единиц, применяемых для вторичной металлургии.

    Дуговые печи, используемые в исследовательских лабораториях, могут иметь емкость всего несколько десятков граммов. Промышленные температуры электрической дуговой печи могут составлять до 1800 °C (3,272 °F), в то время как лабораторные установки могут превышать 3000 °C (5432 °F).

    Дуговые печи отличаются от индукционных тем, что зарядный материал непосредственно подвергается воздействию электрической дуги, а ток в выводах проходит через заряженный материал. Электрическая дуговая печь используется для производства стали, состоит из огнеупорной футеровки, обычно водоохлаждаемой, больших размеров, покрыта раздвижной крышей.

    Электрохимическая коррозия

    Электрохимическая коррозия относится к наиболее часто встречающимся процессам постепенного разрушения металла.

    Как мы знаем, наше окружение наполнено электричеством.

    В зависимости от среды, меняются показатели проводимости. Не отличается то, что при контакте с такой средой сталь начинает постепенно портиться.

    У процесса есть несколько важных отличий.

    В первую очередь – неодновременное протекание восстановления окислительного процесса и ионизации атомов металла.

    На интенсивность распространения при этом влияет такой параметр, как электродный потенциал металла.

    Главная причина электрохимической коррозии в том, что большинство металлов проявляют термодинамическую неустойчивость.

    Примеры распространения коррозии такого типа встречаются в воде, почве, на открытом воздухе.

    Она часто становится причиной потери прочности и постепенного разрушения металла на днище судов, трубопроводов, опор ЛЭП и других объектов.

    Если говорить о типах электрохимической коррозии, то называют 3 разновидности:

    • щелевые поражения;
    • питтинги;
    • межкристаллическое повреждение.

    Повреждаться могут разные типы металлов в зависимости от их расположения. Ржавчина появляется при контакте со стоячей и текущей водой, в местах соединения разных металлов, а также на сварных швах.

    Какие механизмы отвечают за протекание электрохимической коррозии

    Такое повреждение металла проводится двумя механизмами – гомогенным и гетерогенным. Рассмотрим каждый из них подробно.

    • Гомогенный. Первоначально затрагивается поверхностный слой металлического изделия. Постепенно металл начинает растворяться под действием актов – катодного или анодного. На протяжении определенного времени происходит миграция катода и анода. Со временем процесс ускоряется. Особенность гомогенного механизма в том, что затрагивает как твердые, так и жидкие металлы. Меняется только скорость течения.
    • Гетерогенный. У большинства твердых металлов не наблюдается гомогенной поверхности. Это связано с тем, что в самом материале состав кристаллической решетки может отличаться. Также как и в описанном выше случае, формируется анодный и катодный процессы, металл начинает постепенно разрушаться.

    У такого вида процесса есть несколько особенностей.

    В первую очередь – четкое деление на катодный и анодный процесс. Один из основных факторов, влияющих на их скорость протекания относительно друг друга – это время.

    Схема электрохимической коррозии

    В зависимости от типа металла, коррозия может быть локализована на отдельных участках. Также наблюдается растворение поверхностного слоя на анодах, что позволяет поражению затронуть обширные площади.

    Здесь появляется еще одна особенность протекания процесса – формирование гальванических элементов. Это происходит из-за специфики структуры поверхности, на которой присутствуют микроэлектроды.

    Из-за чего начинает развиваться коррозия

    После того, как мы рассмотрели суть электрохимической коррозии, пришло время обратить внимание на причины распространения коррозии.

    Среди них три распространенные:

    • Сплав имеет неоднородную структуру. В большинстве сплавов поверхность негомогенная, потому что в кристаллической решетке присутствуют посторонние включения. Ухудшает ситуацию и присутствие пор макро и микротипа. Это приводит к тому, что продукты коррозии также начинают образовываться неравномерно.
    • Неоднородная среда, в которой находится металл. Чтобы коррозия протекла быстрее, важен фактор доступа окислителя. Электрохимическая реакция может быть ускорена.
    • Отличие физических условий. Коррозия усиливается в том случае, если происходит облучение, в среде присутствуют блуждающие тока. Негативно влияет и температура, особенно при перепадах. В таком случае разница между холодными и теплыми местами становится причиной появления анода.

    Именно по причине различия в критических факторах, скорость электрохимической коррозии может сильно меняться.

    Главные внутренние факторы протекания электрохимической коррозии

    На интенсивность распространения коррозийного поражения влияют две группы факторов – внешние и внутренние.

    Текущее состояние поверхности металла

    Когда поверхность металла неровная, коррозийный процесс протекает намного интенсивнее. Если на поверхности присутствуют небольшие выступы, они начинают накапливать воду.

    Это может негативно повлиять на интенсивность распространения.

    Чтобы не допустить такого фактора, важно использовать отшлифованный или отполированный металл.

    Когда сталь гладкая, вода не так сильно повреждает ее, потому что постепенно происходит формирование равномерной пленки по всей поверхности.

    Также хорошим средством для уменьшения поражения становится применение пассивирования, а также ряд других способов.

    Степень термодинамической стойкости металла

    Разные виды материалов отличаются разными показателями термодинамической устойчивости.

    Наиболее стойкие разновидности материала не разрушаются при помещении в агрессивную среду.

    Чтобы понять, есть ли у металла склонность к коррозии под действием термодинамических факторов, измеряют потенциал анодного и катодного процесса, а также изобарно-изотермического.

    Именно такой фактор оказывает большое влияние на потенциальное воздействие среды на постепенное развитие коррозии.

    К сожалению, у большинства представленных в продаже марок металлов стойкость невысокая. Есть и неустойчивые разновидности, у которых этот риск нивелируется благодаря склонности к образованию пассивных пленок на поверхности.

    Кристаллографическая структура

    Оказывает прямое воздействие на металл.

    Как известно, атомы в кристаллической решетке располагаются по-разному. Лучше защищены те разновидности, у которых атомы упакованы неплотно.

    Особенности решетки также учитывают при планировании защиты материала методом создания на нем специальных пленок. И пленка и сам основной материал должны четко соответствовать по составу друг другу или быть максимально приближенными.

    В этом случае исключается появление напряжения, которое негативно отражается на текущем состоянии заготовки. Если контакт с агрессивной средой все-таки происходит, материал начинает разрушаться слой за слоем.

    Гетерогенность

    Этот фактор рассматривается в непосредственной связи с величиной зерна металла.

    Если в сплаве есть выраженные анодные включения, они сильно влияют на ускорение протекания коррозии.

    Катодные включения не столь опасны, потому что на интенсивности процесса не отражаются. Величина зерна как фактор риска рассматривается не так часто и этим показателем можно пренебречь.

    Не стоит сбрасывать со счетов и механические факторы

    Важно понимать, что многие конструкции из металла используются под постоянным напряжением.

    К этой категории относится повышенное внутреннее напряжение, когда сильно увеличивается риск деформации.

    Негативно влияют на качество металла также воздействие истирания, периодические контакты с другими металлическими изделиями.

    Такой фактор оказывает значительное влияние на интенсивность распространения повреждения.

    Даже если само сырье первоначально обладало стойкостью к потенциальным повреждениям, в таком случае она уменьшится – формируемые пленки просто не будут закрепляться на поверхности.

    Потому лучше сразу исключить это условие электрохимической коррозии – постараться не использовать металлоконструкции под пиковыми сильными нагрузками, не допускать возникновения трения и соприкосновения между собой стальных деталей.

    Основные внешние факторы электрохимической коррозии

    Кроме внутренних, на металл также влияют и внешние факторы.

    Они могут не только ускорять, но и замедлять процесс, а также влиять на характер его протекания.

    К ним относятся следующие:

    • Температура. Температура сильно влияет на то, как себя ведет металл в разных условиях. От нее сильно зависит то, насколько быстро будут растворяться вторичные продукты коррозии. Среди других особенностей – запуск и стимуляция диффузионных процессов в металле, создание перенапряжения на электродах и другие проявления. Когда металлическое изделие помещается в растворы с кислородной деполяризацией, по мере прогрева электролита диффузия окислителя ускоряется. На фоне этого наблюдается сильное снижение перенапряжения ионизации кислорода.

    Если деталь помещается в растворы неокисляющихся кислот, наблюдается коррозия с водородной деполяризацией.

    Повышение температуры уменьшает скорость распространения повреждений, потому что сильно снижается перенапряжение водорода.

    Отдельно стоит отметить ситуацию, когда металл уже покрывается специальной защитной пленкой. В этом случае сам тип пленки будет влиять на то, как именно она поведет себя при контакте с разными видами внешних угроз, в том числе, с повышением температуры.

    Нагрев и охлаждение могут отразиться на состоянии катодов и анодов через их внутренние процессы.

    В некоторых случаях полярность электродов значительно меняется.

    Как мы уже отмечали выше, проблемы могу возникать из-за того, что разные участки детали нагреты до отличающихся друг от друга температур.

    В этом случае стремительно увеличивается количество термогальванических пар, стимулирующих распространение коррозии на новые участки.

    • Уровень рН раствора, в который помещен металл. Такой показатель как рН указывает, насколько в растворе будут активными ионы водорода, и как быстро коррозия будет распространяться по материалу. Это опасно, потому что может непредсказуемо менять потенциал катодных процессов, формирование окисных пленок. Также создается значительное перенапряжение реакции на электродах. Рекомендуется не допускать контакта металла со средами, у которых показатель рН высокий.

    Если по каким-то причинам металлическая заготовка оказалась помещена в раствор, большое значение будет иметь скорость, с которой он движется, а также само наличие внутренних колебаний.

    Заранее определить точное воздействие будет сложно по той причине, что всегда непросто предсказать, как поведут себя нейтральные электролиты.

    Cчитается, что при смешении электролита, меняются показатели диффузии кислорода, что значительно отражается на процессе протекания коррозии.

    Можно уделять меньше внимания скорости движения электролита в том случае, если вы имеете дело со средами повышенной кислотности.

    На них подобное поражение оказывает минимум влияния.

    Чем отличаются анодный и катодный процессы

    Если вы внимательно проследите за тем, как работает гальванический элемент, то увидите, что в нем протекают сразу два связанных друг с другом процесса – анодный и катодный.

    Рассмотрим их более подробно.

    Анодный процесс

    В химии показывается формулой Fe → Fe2+ + 2e. Она показывает, что постепенно запускается окисление, ионы металла начинают переход в раствор.

    Катодный процесс

    Может протекать по-разному.

    В частности, переизбыток электронов решается ассимиляцией атомами электролита и его молекул. На фоне этого происходит восстановительная реакция непосредственно на самом катоде.

    Формула будет зависеть от того, в каких условиях протекает реакция.

    Так при наличии водородной деполяризации можно записать процесс как 2 H+ + 2e → H2.

    Важно понимать, что оба процесса сильно связаны друг с другом под влиянием кинетического фактора.

    С течением времени может происходить взаимное замедление или ускорение анодного или катодного процесса. При этом сам анод всегда будет оставаться тем местом, на котором формируется коррозия металла.

    Во время анализа протекания процесса коррозии часто обращают внимание на электропроводящие фазы и момент после их соприкосновения.

    Обычно одна фаза имеет положительный заряд, в то время как другая – отрицательный. Это приводит к появлению разности потенциалов.

    Таким образом возникает ДЭС или как его часто называют ученые – двойной электрический слой с ассиметричным расположением частиц в местах, где фазы разделяются.

    Опасным для металла становится скачок потенциалов. Он может стимулироваться двумя центральными причинами:

    • Большая накопленная энергия гидратации. В таком случае наблюдается отрыв ионов металла и постепенное перетекание их в раствор. На поверхности в результате остается аналогичное число электронов, заряд становится отрицательным. Далее, в соответствии с законами физики, наблюдается перетекание катионов из раствора, формируется ДЭС на границе, как мы уже описывали выше.
    • Разряжение катионов электролита. В результате металл начинает стремительно принимать положительный заряд. ДЭС появляется из-за активности анионов раствора в контакте с катионами электролита.

    Что происходит в том случае, если поверхностный слой металла совсем не имеет определенного заряда?

    В таком случае ДЭС наблюдаться не будет, возникнет явление нулевого заряда.

    Его потенциал будет отличаться в зависимости от того, с каким металлом вам приходится работать.

    Описанный процесс значительно отражается на том, как протекает коррозия и как быстро она захватывает все новые и новые участки металла.

    В современной науке нет средств, которые могли бы точно измерить величину скачка потенциала, значит и процесс формирования электродвижущей силы оказывается на таким интенсивным.

    Если рассматривать вопросы, связанные с процессом поляризации, можно написать отдельную статью на эту тему.

    Потому далее мы рассмотрим другой важный показатель – поляризацию.

    Поляризация и ее влияние на скорость протекания коррозии

    Процесс поляризации связан с интенсивностью распространения электрохимической коррозии.

    Этот показатель отражает, насколько сильное перенапряжение наблюдается на определенном участке.

    Принято выделять три вида поляризации:

    • Электрохимическая. Чаще всего наблюдается в ситуации, когда катодный и анодный процессы начинают замедляться.
    • Фазовая. Возникает в том случае, если на поверхности материала формируется новая фаза.
    • Концентрационная. Этот процесс появляется в том случае, если есть очень малые показатели скорости отвода продуктов коррозии, а также подхода деполяризатора.

    Особенности поляризации также стоит учитывать в том случае, если вы заинтересованы в дополнительной защите металлов от постепенного разрушения.

    Обеспечиваем эффективную защиту от коррозии

    Наша компания предлагает заказчикам защиту металлоконструкций разных типов от коррозии.

    В пользу работы с нами говорит сразу несколько факторов:

    • Опыт работы с 2007 года, есть постоянные заказчики.
    • Большие производственные площади. Три цеха для горячего цинкования, мощность 120 тысяч тонн в год.
    • Универсальность. Работаем со множеством видов изделий благодаря установленной на предприятии самой глубокой ванны в ЦФО – 3,43 метра.

    Мы используем в процессе проверенное европейское оборудование. Даем гарантию соответствия качества товаров требованиям ГОСТ 9.307-89.

    Чтобы получить дополнительные консультации и ответы на интересующие вас вопросы, звоните нам или оставляйте заявку на сайте.

    Электрохимическая коррозия

    Электрохимическая коррозия – самый распространенный вид коррозии. Электрохимическая коррозия возникает при контакте металла с окружающей электролитически проводящей средой. При этом восстановление окислительного компонента коррозионной среды протекает не одновременно с ионизацией атомов металла и от электродного потенциала металла зависят их скорости. Первопричиной электрохимической коррозии является термодинамическая неустойчивость металлов в окружающих их средах. Ржавление трубопровода, обивки днища морского суда, различных металлоконструкций в атмосфере – это, и многое другое, примеры электрохимической коррозии.

    К электрохимической коррозии относятся такие виды местных разрушений, как питтинги, межкристаллитная коррозия, щелевая. Кроме того процессы электрохимической коррозии происходят в грунте, атмосфере, море.

    Механизм электрохимической коррозии может протекать по двум вариантам:

    1) Гомогенный механизм электрохимической коррозии:

    – поверхностный слой мет. рассматривается как гомогенный и однородный;

    – причиной растворения металла является термодинамическая возможность протекания катодного или же анодного актов;

    – К и А участки мигрируют по поверхности во времени;

    – скорость протекания электрохимической коррозии зависит от кинетического фактора (времени);

    – однородную поверхность можно рассматривать как предельный случай, который может быть реализован и в жидких металлах.

    2) Гетерогенный механизм электрохимической коррозии:

    – у твердых металлов поверхность негомогенная, т.к. разные атомы занимают в сплаве различные положения в кристаллической решетке;

    – гетерогенность наблюдается при наличии в сплаве инородных включений.

    Электрохимическая коррозия имеет некоторые особенности: делится на два одновременно протекающих процесса (катодный и анодный), которые кинетически зависимы друг от друга; на некоторых участках поверхности электрохимическая коррозия может принять локальный характер; растворение основного мет. происходит именно на анодах.

    Поверхность любого металла состоит из множества короткозамкнутых через сам металл микроэлектродов. Контактируя с коррозионной средой образующиеся гальванические элементы способствуют электрохимическому его разрушению.

    Причины возникновения местных гальванических элементов могут быть самые разные:

    1) неоднородность сплава

    – неоднородность мет. фазы, обусловленная неоднородностью сплава и наличием микро- и макровключений;

    – неравномерность окисных пленок на поверхности за счет наличия макро- и микропор, а также неравномерного образования вторичных продуктов коррозии;

    – наличие на поверхности границ зерен кристаллов, выхода дислокации на поверхность, анизотропность кристаллов.

    2) неоднородность среды

    – область с ограниченным доступом окислителя будет анодом по отношению к области со свободным доступом, что ускоряет электрохимическую коррозию.

    3) неоднородность физических условий

    – облучение (облученный участок – анод);

    – воздействие внешних токов (место входа блуждающего тока – катод, место выхода – анод);

    – температура (по отношению к холодным участкам, нагретые являются анодами) и т. д.

    При работе гальванического элемента одновременно протекает два электродных процесса:

    Анодный – ионы металла переходят в раствор

    Происходит реакция окисления.

    Катодный – избыточные электроны ассимилируются молекулами или атомами электролита, которые при этом восстанавливаются. На катоде проходит реакция восстановления.

    O2 + 2H2O + 4e → 4OH – (кислородная деполяризация в нейтральных, щелочных средах)

    O2 + 4H + + 4e → 2H2O (кислородная деполяризация в кислых средах)

    2 H + + 2e → H2 (при водородной деполяризации).

    Торможение анодного процесса приводит к торможению и катодного.

    При соприкосновении двух электропроводящих фаз (например, мет. – среда), когда одна из них заряжена положительно, а другая отрицательно, между ними возникает разность потенциала. Это явление связано с возникновением двойного электрического слоя (ДЭС). Заряженные частицы располагаются несимметрично на границе раздела фаз.

    Скачек потенциалов в процессе электрохимической коррозии может происходить из-за двух причин:

    При достаточно большой энергии гидратации ионы металла могут отрываться и переходить в раствор, оставляя на поверхности эквивалентное число электронов, которые определяют ее отрицательный заряд. Отрицательно заряженная поверхность притягивает к себе катионы мет. из раствора. Так на границе раздела фаз возникает двойной электрический слой.

    На поверхности металла разряжаются катионы электролита. Это приводит к тому, что поверхность мет. приобретает положительный заряд, который с анионами раствора образует двойной электрический слой.

    Иногда возникает ситуация, когда поверхность не заряжена и, соответственно, отсутствует ДЭС. Потенциал, при котором это явление наблюдается называется потенциалом нулевого заряда (φN). У каждого металла потенциал нулевого заряда свой.

    Величина электродных потенциалов оказывает очень большое влияние на характер коррозионного процесса.

    Скачок потенциала между двух фаз не может быть измерен, но при помощи компенсационного метода можно измерить электродвижущую силу элемента (ЭДС), который состоит из электрода сравнения (его потенциал условно принят за ноль) и исследуемого электрода. В качестве электрода сравнения берется стандартный водородный электрод. ЭДС гальванического элемента (стандартный водородный электрод и исследуемый элемент) называют электродным потенциалом. Электродами сравнения могут также выступать хлорсеребряный, каломельный, насыщенный медно-сульфатный.

    Международной конвенцией в Стокгольме 1953г. решено при записях электрод сравнения всегда ставить слева. При этом ЭДС рассчитывать, как разность потенциалов правого и левого электродов.

    Если положительный заряд внутри системы движется слева направо – ЭДС элемента считается положительной, при этом

    где F – число Фарадея. Если положительные заряды будут двигаться в противоположном направлении, то уравнение будет иметь вид:

    При коррозии в электролитах самыми распространенными и значимыми являются адсорбционные (адсорбция катионов или анионов на границе раздела фаз) и электродные потенциалы (переход катионов из металла в электролит или наоборот).

    Электродный потенциал, при котором металл находится в состоянии равновесия с собственными ионами называется равновесный (обратимый). Он зависит от природы металлической фазы, растворителя, температуры электролита, активности ионов мет.

    Равновесный потенциал подчиняется уравнению Нернста:

    где, E ο – стандартный потенциал мет.; R – молярная газовая постоянная; n – степень окисления иона мет.; Т – температура; F – число Фарадея;αMe n+ – активность ионов мет.

    При установленном равновесном потенциале электрохимическая коррозия не наблюдается.

    Если по электроду проходит электрический ток – равновесное состояние его нарушается. Потенциал электрода изменяется в зависимости от направления и силы тока. Изменение разности потенц., приводящее к уменьшению силы тока, принято называть поляризацией. Уменьшение поляризуемости электродов называют деполяризацией.

    Скорость электрохимической коррозии тем меньше, чем больше поляризация. Поляризация характеризуется величиной перенапряжения.

    Поляризация бывает трех типов:

    – электрохимическая (при замедлении анодного или катодного процессов);

    – концентрационная (наблюдается, когда скорость подхода деполяризатора к поверхности и отвода продуктов коррозии мала);

    – фазовая (связана с образованием на поверхности новой фазы).

    Электрохимическая коррозия наблюдается также при контакте двух разнородных металлов. В электролите они образуют гальванопару. Более электроотрицательный из них будет анодом. Анод в процессе будет постепенно растворяться. При этом идет замедление или даже полное прекращение электрохимической коррозии на катоде (более электроположительном). Например, при контакте в морской воде дюралюминия с никелем интенсивно растворятся будет именно дюралюминий.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
gmnu-nazarovo.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: